ARTICLE IN PRESS

Available online at www.sciencedirect.com

indagationes mathematicae

Indagationes Mathematicae (

www.elsevier.com/locate/indag

Algebraic sums and products of univoque bases

Karma Dajani^a, Vilmos Komornik^b, Derong Kong^c,*, Wenxia Li^d

^a Department of Mathematics, Utrecht University, Fac Wiskunde en informatica and MRI, Budapestlaan 6, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands

^b Département de mathématique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France ^c Mathematical Institute, University of Leiden, PO Box 9512, 2300 RA Leiden, The Netherlands

^d Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200062, People's Republic of China

Abstract

Given $x \in (0, 1]$, let $\mathcal{U}(x)$ be the set of bases $q \in (1, 2]$ for which there exists a unique sequence (d_i) of zeros and ones such that $x = \sum_{i=1}^{\infty} d_i/q^i$. Lü et al. (2014) proved that $\mathcal{U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this paper, we show that the algebraic sum $\mathcal{U}(x) + \lambda \mathcal{U}(x)$ and product $\mathcal{U}(x) \cdot \mathcal{U}(x)^{\lambda}$ contain an interval for all $x \in (0, 1]$ and $\lambda \neq 0$. As an application we show that the same phenomenon occurs for the set of non-matching parameters studied by the first author and Kalle (Dajani and Kalle, 2017).

© 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Algebraic differences; Non-integer base expansions; Univoque bases; Thickness; Cantor sets; Non-matching parameters

1. Introduction

Non-integer base expansions, a natural extension of dyadic expansions, have got much attention since the ground-breaking works of Rényi [18] and Parry [17]. Given a base $q \in (1, 2]$, an infinite sequence (d_i) of zeros and ones is called a *q*-expansion of x if

$$x = \sum_{i=1}^{\infty} \frac{d_i}{q^i} =: ((d_i))_q.$$

* Corresponding author.

E-mail addresses: k.dajani1@uu.nl (K. Dajani), komornik@math.unistra.fr (V. Komornik), d.kong@math.leidenuniv.nl (D. Kong), wxli@math.ecnu.edu.cn (W. Li).

https://doi.org/10.1016/j.indag.2018.05.010

0019-3577/© 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: K. Dajani, et al., Algebraic sums and products of univoque bases, Indagationes Mathematicae (2018), https://doi.org/10.1016/j.indag.2018.05.010.

ARTICLE IN PRESS

K. Dajani et al. / Indagationes Mathematicae 🛚 (💵 🌒) 💵 – 💵

A number x has a q-expansion if and only if $x \in I_q := [0, \frac{1}{q-1}]$. Contrary to the dyadic expansions, Lebesgue almost every $x \in I_q$ has a continuum of q-expansions (see [19]). On the other hand, for each $k \in \mathbb{N} := \{1, 2, ...\}$ or $k = \aleph_0$ there exist $q \in (1, 2]$ and $x \in I_q$ such that x has precisely k different q-expansions (see [6]). For more information on the non-integer base expansions we refer to the survey paper [7] and the book chapter [3].

On the other hand, algebraic differences of Cantor sets and their connections with dynamical systems have been intensively investigated since the work of Newhouse [16], who introduced the notion of *thickness* to study whether a given Cantor set $C \subset \mathbb{R}$ has a non-empty intersection with its translations. Since $C \cap (C + t) \neq \emptyset$ if and only if $t \in C - C$, where the *algebraic difference* of two sets $A, B \subset \mathbb{R}$ is defined by $A - B := \{a - b : a \in A, b \in B\}$, the thickness (see Definition 3.1) can be used to study the algebraic difference of Cantor sets (cf. [1,13,14]).

In this paper, we consider the algebraic differences of sets of univoque bases for given real numbers. To be more precise, for $x \in (0, 1]$, let $\mathcal{U}(x)$ be the set of bases $q \in (1, 2]$ such that x has a unique q-expansion. Then each element of $\mathcal{U}(x)$ is called a *univoque base* of x. Lü et al. [15] proved that $\mathcal{U}(x)$ is a Lebesgue null set of full Hausdorff dimension.

We will prove the following result for the *algebraic sum* and *product* of U(x) defined respectively by

$$\mathcal{U}(x) + \lambda \mathcal{U}(x) := \{ p + \lambda q : p, q \in \mathcal{U}(x) \} \text{ and } \mathcal{U}(x) \cdot \mathcal{U}(x)^{\lambda} := \{ pq^{\lambda} : p, q \in \mathcal{U}(x) \}.$$

Theorem 1.1. For every $x \in (0, 1]$ and every $\lambda \neq 0$ both the sum $\mathcal{U}(x) + \lambda \mathcal{U}(x)$ and product $\mathcal{U}(x) \cdot \mathcal{U}(x)^{\lambda}$ contain an interval.

We mention that the product $\mathcal{U}(x) \cdot \mathcal{U}(x)^{\lambda}$ in Theorem 1.1 can be converted to a sum by taking the logarithm and then repeating the construction (see Section 3 for more details). Hence, we will focus more on the algebraic sum $\mathcal{U}(x) + \lambda \mathcal{U}(x)$.

Remarks 1.2.

- For $\lambda = -1$ Theorem 1.1 states that the algebraic difference $\mathcal{U}(x) \mathcal{U}(x)$ and quotient $\mathcal{U}(x) \cdot \mathcal{U}(x)^{-1}$ contain an interval for each $x \in (0, 1]$.
- For x = 1 the set $\mathcal{U} := \mathcal{U}(1)$ is well-studied. For example, it has a smallest element $q_{KL} \approx 1.78723$, called the Komornik–Loreti constant (see [8]), and its closure $\overline{\mathcal{U}}$ is a Cantor set (see [9]). Furthermore, the local Hausdorff dimension of \mathcal{U} is positive (see [12]), i.e., $\dim_H(\mathcal{U} \cap (q \delta, q + \delta)) > 0$ for any $q \in \mathcal{U}$ and $\delta > 0$. Theorem 1.1 for x = 1 and $\lambda = -1$ states that the algebraic difference $\mathcal{U} \mathcal{U}$ and quotient $\mathcal{U} \cdot \mathcal{U}^{-1}$ contain an interval.
- The algebraic sum $\mathcal{U}(x) + \lambda \mathcal{U}(x)$ containing an interval for all $\lambda \neq 0$ can also be expressed by saying that for each $x \in (0, 1]$ and for each oblique straight line L passing through 0, the projection of the product set $\mathcal{U}(x) \times \mathcal{U}(x) = \{(p, q) : p, q \in \mathcal{U}(x)\}$ onto L contains an interval for all $x \in (0, 1]$.

We will also show that the same phenomenon occurs for the set of non-matching parameters, recently studied by the first author and Kalle [2]. Let us introduce for each $\alpha \in [1, 2]$ the map $S_{\alpha} : [-1, 1] \rightarrow [-1, 1]$ by the formula

$$S_{\alpha}(x) = \begin{cases} 2x + \alpha, & \text{if} \quad -1 \le x < \frac{1}{2}, \\ 2x, & \text{if} \quad -\frac{1}{2} \le x \le \frac{1}{2}, \\ 2x - \alpha, & \text{if} \quad \frac{1}{2} < x \le 1. \end{cases}$$

Please cite this article in press as: K. Dajani, et al., Algebraic sums and products of univoque bases, Indagationes Mathematicae (2018), https://doi.org/10.1016/j.indag.2018.05.010.

Download English Version:

https://daneshyari.com/en/article/8906020

Download Persian Version:

https://daneshyari.com/article/8906020

Daneshyari.com