Algebraic sums and products of univoque bases

Karma Dajani ${ }^{\text {a }}$, Vilmos Komornik ${ }^{\text {b }}$, Derong Kong ${ }^{\text {c,* }}$, Wenxia Li $^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, Utrecht University, Fac Wiskunde en informatica and MRI, Budapestlaan 6, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
${ }^{\text {b }}$ Département de mathématique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France
${ }^{c}$ Mathematical Institute, University of Leiden, PO Box 9512, 2300 RA Leiden, The Netherlands
${ }^{\text {d }}$ Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200062, People's Republic of China

Abstract

Given $x \in(0,1]$, let $\mathcal{U}(x)$ be the set of bases $q \in(1,2]$ for which there exists a unique sequence $\left(d_{i}\right)$ of zeros and ones such that $x=\sum_{i=1}^{\infty} d_{i} / q^{i}$. Lü et al. (2014) proved that $\mathcal{U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this paper, we show that the algebraic sum $\mathcal{U}(x)+\lambda \mathcal{U}(x)$ and product $\mathcal{U}(x) \cdot \mathcal{U}(x)^{\lambda}$ contain an interval for all $x \in(0,1]$ and $\lambda \neq 0$. As an application we show that the same phenomenon occurs for the set of non-matching parameters studied by the first author and Kalle (Dajani and Kalle, 2017).

© 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Algebraic differences; Non-integer base expansions; Univoque bases; Thickness; Cantor sets; Non-matching parameters

1. Introduction

Non-integer base expansions, a natural extension of dyadic expansions, have got much attention since the ground-breaking works of Rényi [18] and Parry [17]. Given a base $q \in(1,2]$, an infinite sequence $\left(d_{i}\right)$ of zeros and ones is called a q-expansion of x if

$$
x=\sum_{i=1}^{\infty} \frac{d_{i}}{q^{i}}=:\left(\left(d_{i}\right)\right)_{q} .
$$

[^0]https://doi.org/10.1016/j.indag.2018.05.010
0019-3577/⑳18 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

A number x has a q-expansion if and only if $x \in I_{q}:=\left[0, \frac{1}{q-1}\right]$. Contrary to the dyadic expansions, Lebesgue almost every $x \in I_{q}$ has a continuum of q-expansions (see [19]). On the other hand, for each $k \in \mathbb{N}:=\{1,2, \ldots\}$ or $k=\aleph_{0}$ there exist $q \in(1,2]$ and $x \in I_{q}$ such that x has precisely k different q-expansions (see [6]). For more information on the non-integer base expansions we refer to the survey paper [7] and the book chapter [3].

On the other hand, algebraic differences of Cantor sets and their connections with dynamical systems have been intensively investigated since the work of Newhouse [16], who introduced the notion of thickness to study whether a given Cantor set $C \subset \mathbb{R}$ has a non-empty intersection with its translations. Since $C \cap(C+t) \neq \emptyset$ if and only if $t \in C-C$, where the algebraic difference of two sets $A, B \subset \mathbb{R}$ is defined by $A-B:=\{a-b: a \in A, b \in B\}$, the thickness (see Definition 3.1) can be used to study the algebraic difference of Cantor sets (cf. [1,13,14]).

In this paper, we consider the algebraic differences of sets of univoque bases for given real numbers. To be more precise, for $x \in(0,1]$, let $\mathcal{U}(x)$ be the set of bases $q \in(1,2]$ such that x has a unique q-expansion. Then each element of $\mathcal{U}(x)$ is called a univoque base of x. Lü et al. [15] proved that $\mathcal{U}(x)$ is a Lebesgue null set of full Hausdorff dimension.

We will prove the following result for the algebraic sum and product of $\mathcal{U}(x)$ defined respectively by

$$
\mathcal{U}(x)+\lambda \mathcal{U}(x):=\{p+\lambda q: p, q \in \mathcal{U}(x)\} \quad \text { and } \quad \mathcal{U}(x) \cdot \mathcal{U}(x)^{\lambda}:=\left\{p q^{\lambda}: p, q \in \mathcal{U}(x)\right\} .
$$

Theorem 1.1. For every $x \in(0,1]$ and every $\lambda \neq 0$ both the $\operatorname{sum} \mathcal{U}(x)+\lambda \mathcal{U}(x)$ and product $\mathcal{U}(x) \cdot \mathcal{U}(x)^{\lambda}$ contain an interval.

We mention that the product $\mathcal{U}(x) \cdot \mathcal{U}(x)^{\lambda}$ in Theorem 1.1 can be converted to a sum by taking the logarithm and then repeating the construction (see Section 3 for more details). Hence, we will focus more on the algebraic $\operatorname{sum} \mathcal{U}(x)+\lambda \mathcal{U}(x)$.

Remarks 1.2.

- For $\lambda=-1$ Theorem 1.1 states that the algebraic difference $\mathcal{U}(x)-\mathcal{U}(x)$ and quotient $\mathcal{U}(x) \cdot \mathcal{U}(x)^{-1}$ contain an interval for each $x \in(0,1]$.
- For $x=1$ the set $\mathcal{U}:=\mathcal{U}(1)$ is well-studied. For example, it has a smallest element $q_{K L} \approx 1.78723$, called the Komornik-Loreti constant (see [8]), and its closure $\overline{\mathcal{U}}$ is a Cantor set (see [9]). Furthermore, the local Hausdorff dimension of \mathcal{U} is positive (see [12]), i.e., $\operatorname{dim}_{H}(\mathcal{U} \cap(q-\delta, q+\delta))>0$ for any $q \in \mathcal{U}$ and $\delta>0$. Theorem 1.1 for $x=1$ and $\lambda=-1$ states that the algebraic difference $\mathcal{U}-\mathcal{U}$ and quotient $\mathcal{U} \cdot \mathcal{U}^{-1}$ contain an interval.
- The algebraic sum $\mathcal{U}(x)+\lambda \mathcal{U}(x)$ containing an interval for all $\lambda \neq 0$ can also be expressed by saying that for each $x \in(0,1]$ and for each oblique straight line L passing through 0 , the projection of the product set $\mathcal{U}(x) \times \mathcal{U}(x)=\{(p, q): p, q \in \mathcal{U}(x)\}$ onto L contains an interval for all $x \in(0,1]$.

We will also show that the same phenomenon occurs for the set of non-matching parameters, recently studied by the first author and Kalle [2]. Let us introduce for each $\alpha \in[1,2]$ the map $S_{\alpha}:[-1,1] \rightarrow[-1,1]$ by the formula

$$
S_{\alpha}(x)=\left\{\begin{array}{llc}
2 x+\alpha, & \text { if } & -1 \leq x<\frac{1}{2} \\
2 x, & \text { if } & -\frac{1}{2} \leq x \leq \frac{1}{2} \\
2 x-\alpha, & \text { if } & \frac{1}{2}<x \leq 1
\end{array}\right.
$$

https://daneshyari.com/en/article/8906020

Download Persian Version:

https://daneshyari.com/article/8906020

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: k.dajani1 @uu.nl (K. Dajani), komornik @ math.unistra.fr (V. Komornik), d.kong@math.leidenuniv.nl (D. Kong), wxli@math.ecnu.edu.cn (W. Li).

