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Abstract

The aim of this note is to characterize in terms of inequalities those pairs of real functions (acting
on a convex subset of a vector space) that possess an affine separator. The main result is originally due
to Behrends and Nikodem. Their method is based on the Hahn–Banach Theorem and a variant of the
Helly Theorem. In our approach, a direct and independent proof is presented via the Radon and the Helly
Theorems.
c⃝ 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

The classical Hahn–Banach Sandwich Theorem states that if a convex function majorizes a
concave one on a convex subset of a vector space, then they can be separated by an affine func-
tion. This result can be considered as a sufficient condition for pairs of functions to have an affine
separator. Therefore the question arises: Is it possible to find a characteristic property instead of
the sufficient one? The same demand arises in connection of convex or concave separators.

Surprisingly, in both cases the answer is positive. The characterizations are given in terms
of inequalities involving arbitrary long convex combinations. The theorem concerning the affine
separation can be found in the book of Fuchssteiner and Lusky [10, p. 35], while the analogous
result for convex separation is due to Baron, Matkowski and Nikodem [3]. Moreover, an abstract
separation theorem can also be established: Besides further applications, the paper of Nikodem,
Páles and Wąsowicz [12] involves all these cases.
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Separation problems come into the focus of Convex Geometry whence the underlying space
is finite dimensional: It turns out that the length of the characteristic inequalities can uniformly
be reduced “close” to the dimension of the domain. Using the Carathéodory Theorem [8], the
problem of convex separation is solved by Baron, Matkowski and Nikodem [3]. The affine
correspondence is due to Nikodem and Wąsowicz [13] provided that the vector space is the
real line. Their method relies on the Santaló Theorem [15]. The general case is answered by
Behrends and Nikodem [5]. In fact, first they prove an affine selection theorem via a variant of
the Helly Theorem [11], and then they combine it with the Hahn–Banach Theorem. Let us recall
here their obtained corollary:

Theorem. Let D be a convex subset of a d-dimensional vector space X. There exists an affine
separator between the functions f, g : D → R if and only if

n∑
k=1

λk f (xk) ≤

m∑
l=1

µl g(yl) (1)

holds for all convex combinations λ1x1 + · · · + λn xn = µ1 y1 + · · · + µm ym with base points in
D and with n + m = dim(X ) + 2.

Applying a result of Bárány [2], a further generalization of this statement is presented by
Balaj and Nikodem [1]. The aim of our paper is to revisit the above theorem of Behrends
and Nikodem with an alternative, elementary and self-contained approach. This direct way
completely avoids the use of set-valued mappings. Besides the Helly Theorem, our key tool
is the Radon Theorem [14]. Some ideas from the papers [6] and [7] are also adopted.

2. Proof of the affine separation theorem

In the forthcomings, the Helly Theorem [11] and the Radon Theorem [14] play a crucial role.
For their detailed form, consult the book of Barvinok [4] or the monograph of Danzer, Grünbaum
and Klee [9]. The abbreviations Conv, Aff, Lin will stand for the convex, affine and linear hull
operators. The set of real valued affine functions acting on a vector space X will be denoted by
A (X,R). The first two technical lemmas subsume the most important properties of A (X,R)
and its certain subsets. The third lemma is a dimension formula for intersecting affine hulls.

Lemma 1. Let {p1, . . . , pd+1} be an affine independent subset of the d-dimensional vector space
X. Then,

∥h∥∞ := max{|h(p1)|, . . ., |h(pd+1)|}

defines a norm on A (X,R).

Hint. Most of the norm properties can be checked quite easily. The only one which needs some
explanation is that ∥h∥ = 0 implies h = 0. However, this follows from the fact that any affine
function is determined uniquely by its values at a maximal affine independent set. □

Lemma 2. If X is a d-dimensional vector space, f, g : D → R are given functions fulfilling
f ≤ g, then the set

H (p) := {h ∈ A (X,R) | f (p) ≤ h(p) ≤ g(p)}

is a nonempty, convex and closed subset of A (X,R) for any p ∈ D. Moreover, if {p1, . . . , pd+1}

is an affine independent subset of X, then H := H (p1) ∩ . . . ∩ H (pd+1) is compact.
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