ARTICLE IN PRESS

Available online at www.sciencedirect.com

indagationes mathematicae

www.elsevier.com/locate/indag

Hypercyclic composition operators on the little Bloch space and the Besov spaces

Yu-Xia Liang, Ze-Hua Zhou*

School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, PR China

Received 11 December 2017; accepted 24 March 2018

Communicated by J.M.A.M. van Neerven

Abstract

Let $S(\mathbb{D})$ be the collection of all holomorphic self-maps on \mathbb{D} of the complex plane \mathbb{C} , and C_{φ} the composition operator induced by $\varphi \in S(\mathbb{D})$. We obtain that there are no hypercyclic composition operators on the little Bloch space \mathcal{B}_0 and the Besov space B_p .

© 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Hypercyclic; Composition operator; Bloch space; Besov space

1. Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk in the complex plane \mathbb{C} and $S(\mathbb{D})$ be the collection of all holomorphic self-maps on \mathbb{D} . We denote dA(z) = dxdy the Lebesgue area measure on \mathbb{C} . For the composition operator C_{φ} induced by $\varphi \in S(\mathbb{D})$ is defined as

 $C_{\varphi}f(z) = f \circ \varphi(z), \ f \in H(\mathbb{D}), \ z \in \mathbb{D}.$

The one-to-one holomorphic functions that map \mathbb{D} onto itself, called the *Möbius* transformations, and denoted by \mathcal{M} (also $Aut(\mathbb{D})$), have the form $\lambda \varphi_a$, where $|\lambda| = 1$ and φ_a is the basic

* Corresponding author.

https://doi.org/10.1016/j.indag.2018.03.004

0019-3577/© 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: Y.-X. Liang, Z.-H. Zhou, Hypercyclic composition operators on the little Bloch space and the Besov spaces, Indagationes Mathematicae (2018), https://doi.org/10.1016/j.indag.2018.03.004.

E-mail addresses: liangyx1986@126.com (Y.-X. Liang), zehuazhoumath@aliyun.com, zhzhou@tju.edu.cn (Z.-H. Zhou).

ARTICLE IN PRESS

Y.-X. Liang, Z.-H. Zhou / Indagationes Mathematicae I (IIII)

conformal automorphism defined by

$$\varphi_a(z) = \frac{a-z}{1-\bar{a}z}, \ z \in \mathbb{D},$$

for $a \in \mathbb{D}$. The following identities are easily verified:

$$1 - |\varphi_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - \bar{a}z|^2}$$

and

$$(1 - |z|^2)|\varphi_a'(z)| = 1 - |\varphi_a(z)|^2.$$
(1.1)

A linear space X of analytic functions on the open unit disk \mathbb{D} is said to be *Möbius-invariant*, if $f \circ S \in X$ for all $f \in X$ and all $S \in \mathcal{M}$ and X has a seminorm $|| ||_X$ such that $|| f \circ S ||_X = || f ||_X$ for each $f \in X$ and each $S \in \mathcal{M}$.

The well-known *Möbius-invariant* function space — the Besov spaces B_p (1) are defined as follows

$$B_p = \{ f \in H(\mathbb{D}) : \| f \|_{B_p}^p = \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{p-2} dA(z) < \infty \},$$

that is, $f \in B_p$ if and only if the function $(1 - |z|^2) f' \in L^p(\mathbb{D}, d\lambda)$, where

$$d\lambda(z) = \frac{dA(z)}{(1-|z|^2)^2}.$$

Although the measure λ is not a finite measure on \mathbb{D} , it is a *Möbius-invariant*. Indeed, by (1.1)

$$d\lambda(\varphi_a(z)) = \frac{|\varphi_a'(z)|^2}{(1-|\varphi_a(z)|^2)^2} dA(z) = \frac{dA(z)}{(1-|z|^2)^2} = d\lambda(z).$$

Hence we have the following change-of-variable formula

$$\int_{\mathbb{D}} f \circ \varphi_a(z) d\lambda(z) = \int_{\mathbb{D}} f(u) d\lambda(u)$$

for every positive measurable function f on \mathbb{D} , from which it is easily seen that

$$\|f \circ \varphi_a\|_{B_p} = \|f\|_{B_p}, \tag{1.2}$$

and the above identity also holds for $S = \lambda \varphi_a \in \mathcal{M}$ with $|\lambda| = 1$. Thus

if $f \in B_p$ then $f \circ S \in B_p$ for all $S \in \mathcal{M}$.

That is, B_p (1 < $p < \infty$) are *Möbius-invariant* spaces.

For p = 1, the Besov space B_1 consists of the analytic functions f on \mathbb{D} that admit the representation

$$f(z) = \sum_{n=1}^{\infty} a_n \varphi_{\lambda_n}(z), \ z \in \mathbb{D},$$

where $\{a_n\} \in l^1$ and $\lambda_n \in \mathbb{D}$ for $n \in \mathbb{N}$. The norm in B_1 is defined as

$$||f||_{B_1} = \inf \left\{ \sum_{n=1}^{\infty} |a_n| : f(z) = \sum_{n=1}^{\infty} a_n \varphi_{\lambda_n}(z), z \in \mathbb{D} \right\}.$$

Please cite this article in press as: Y.-X. Liang, Z.-H. Zhou, Hypercyclic composition operators on the little Bloch space and the Besov spaces, Indagationes Mathematicae (2018), https://doi.org/10.1016/j.indag.2018.03.004.

2

Download English Version:

https://daneshyari.com/en/article/8906044

Download Persian Version:

https://daneshyari.com/article/8906044

Daneshyari.com