Virtual Special Issue - L.E.J. Brouwer after 50 years

On the cofinality of the splitting number

Alan Dow ${ }^{\text {a,* }}$, Saharon Shelah ${ }^{\text {b, }}$
${ }^{\text {a }}$ Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
${ }^{\text {b }}$ Department of Mathematics, Rutgers University, Hill Center, Piscataway, NJ, 08854-8019, USA

Abstract

The splitting number \mathfrak{s} can be singular. The key method is to construct a forcing poset with finite support matrix iterations of ccc posets introduced by Blass and Shelah (1989). © 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Splitting number; Cardinal invariants of the continuum; Matrix forcing

1. Introduction

The cardinal invariants of the continuum discussed in this article are very well known (see [4, van Douwen, p 111]) so we just give a brief reminder. They deal with the mod finite ordering of the infinite subsets of the integers. A set $S \subset \omega$ is unsplit by a family $\mathcal{Y} \subset[\omega]^{\aleph_{0}}$ if S is \bmod finite contained in one member of $\{Y, \omega \backslash Y\}$ for each $Y \in \mathcal{Y}$. The splitting number \mathfrak{s} is the minimum cardinal of a family \mathcal{Y} for which there is no infinite set unsplit by \mathcal{Y} (equivalently every $S \in[\omega]^{\aleph_{0}}$ is split by some member of \mathcal{Y}). It is mentioned in [2] that it is currently unknown if \mathfrak{s} can be a singular cardinal.

Proposition 1.1. The cofinality of the splitting number is not countable.
Proof. Assume that θ is the supremum of $\left\{\kappa_{n}: n \in \omega\right\}$ and that there is no splitting family of cardinality less than θ. Let $\mathcal{Y}=\left\{Y_{\alpha}: \alpha<\theta\right\}$ be a family of subsets of ω. Let $S_{0}=\omega$ and by induction on n, choose an infinite subset S_{n+1} of S_{n} so that S_{n+1} is not split by the family

[^0]$\left\{Y_{\alpha}: \alpha<\kappa_{n}\right\}$. If S is any pseudointersection of $\left\{S_{n}: n \in \omega\right\}$, then S is not split by any member of \mathcal{Y}.

One can easily generalize the previous result and proof to show that the cofinality of the splitting number is at least \mathfrak{t}. In this paper we prove the following.

Theorem 1.2. If κ is any uncountable regular cardinal, then there is $a \lambda>\kappa$ with $\operatorname{cf}(\lambda)=\kappa$ and a ccc forcing \mathbb{P} satisfying that $\mathfrak{s}=\lambda$ in the forcing extension.

To prove the theorem, we construct \mathbb{P} using matrix iterations.

2. A special splitting family

Definition 2.1. Let us say that a family $\left\{x_{i}: i \in I\right\} \subset[\omega]^{\omega}$ is θ-Luzin (for an uncountable cardinal θ) if for each $J \in[I]^{\theta}, \bigcap\left\{x_{i}: i \in J\right\}$ is finite and $\bigcup\left\{x_{i}: i \in J\right\}$ is cofinite.

Clearly a family is θ-Luzin if every θ-sized subfamily is θ-Luzin. We leave to the reader the easy verification that for a regular uncountable cardinal θ, each θ-Luzin family is a splitting family. A poset being θ-Luzin preserving will have the obvious meaning. For example, any poset of cardinality less than a regular cardinal θ is θ-Luzin preserving.

Lemma 2.2. If θ is a regular uncountable cardinal then any ccc finite support iteration of θ-Luzin preserving posets is again θ-Luzin preserving.

Proof. We prove this by induction on the length of the iteration. Fix any θ-Luzin family $\left\{x_{i}: i \in I\right\}$ and let $\left\langle\left\langle\mathbb{P}_{\alpha}: \alpha \leq \gamma\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha}: \alpha<\gamma\right\rangle\right\rangle$ be a finite support iteration of ccc posets satisfying that \mathbb{P}_{α} forces that $\dot{\mathbb{Q}}_{\alpha}$ is ccc and θ-Luzin preserving, for all $\alpha<\gamma$. If γ is a successor ordinal $\beta+1$, then for any \mathbb{P}_{β}-generic filter G_{β}, the family $\left\{x_{i}: i \in I\right\}$ is a θ-Luzin family in $V\left[G_{\beta}\right]$. By the hypothesis on $\dot{\mathbb{Q}}_{\beta}$, this family remains θ-Luzin after further forcing by $\dot{\mathbb{Q}}_{\beta}$.

Now we assume that α is a limit. Let \dot{J}_{0} be any \mathbb{P}_{γ}-name of a subset of I and assume that $p \in \mathbb{P}_{\gamma}$ forces that $\left|\dot{J}_{0}\right|=\theta$. We must produce a $q<p$ that forces that \dot{J}_{0} is as in the definition of θ-Luzin. There is a set $J_{1} \subset I$ of cardinality θ satisfying that, for each $i \in J_{1}$, there is a $p_{i}<p$ with $p_{i} \Vdash i \in \dot{J}_{0}$. The case when the cofinality of α not equal to θ is almost immediate. There is a $\beta<\alpha$ such that $J_{2}=\left\{i \in J_{1}: p_{i} \in \mathbb{P}_{\beta}\right\}$ has cardinality θ. There is a \mathbb{P}_{β}-generic filter G_{β} such that $J_{3}=\left\{i \in J_{2}: p_{i} \in G_{\beta}\right\}$ has cardinality θ. By the induction hypothesis, the family $\left\{x_{i}: i \in I\right\}$ is θ-Luzin in $V\left[G_{\beta}\right]$ and so we have that $\bigcap\left\{x_{i}: i \in J_{3}\right\}$ is finite and $\bigcup\left\{x_{i}: i \in J_{3}\right\}$ is co-finite. Choose any $q<p$ in G_{β} and a name \dot{J}_{3} for J_{3} so that q forces this property for \dot{J}_{3}. Since q forces that $\dot{J}_{3} \subset \dot{J}_{0}$, we have that q forces the same property for \dot{J}_{0}.

Finally we assume that α has cofinality θ. Naturally we may assume that the collection $\left\{\operatorname{dom}\left(p_{i}\right): i \in J_{1}\right\}$ forms a Δ-system with root contained in some $\beta<\alpha$. Again, we may choose a \mathbb{P}_{β}-generic filter G_{β} satisfying that $J_{2}=\left\{i \in J_{1}: p_{i} \upharpoonright \beta \in G_{\beta}\right\}$ has cardinality θ. In $V\left[G_{\beta}\right]$, let $\left\{J_{2, \xi}: \xi \in \omega_{1}\right\}$ be a partition of J_{2} into pieces of size θ. For each $\xi \in \omega_{1}$, apply the induction hypothesis in the model $V\left[G_{\beta}\right]$, and so we have that $\bigcap\left\{x_{i}: i \in J_{2, \xi}\right\}$ is finite and $\bigcup\left\{x_{i}: i \in J_{2, \xi}\right\}$ is co-finite. For each $\xi \in \omega_{1}$ let m_{ξ} be an integer large enough so that $\bigcap\left\{x_{i}: i \in J_{2, \xi}\right\} \subset m_{\xi}$ and $\bigcup\left\{x_{i}: i \in J_{2, \xi}\right\} \supset \omega \backslash m_{\xi}$. Let m be any integer such that $m_{\xi}=m$ for uncountably many ξ. Choose any condition $\bar{p} \in \mathbb{P}_{\alpha}$ so that $\bar{p} \upharpoonright \beta \in G_{\beta}$. We prove that for each $n>m$ there is a $\bar{p}_{n}<\bar{p}$ so that $\bar{p}_{n} \Vdash n \notin \bigcap\left\{x_{i}: i \in \dot{I}\right\}$ and $\bar{p}_{n} \Vdash n \in \bigcup\left\{x_{i}: i \in \dot{I}\right\}$. Choose any $\xi \in \omega_{1}$ so that $m_{\xi}=m$ and $\operatorname{dom}\left(p_{i}\right) \cap \operatorname{dom}(\bar{p}) \subset \beta$ for all $i \in J_{2, \xi}$. Now choose any $i_{0} \in J_{2, \xi}$ so that $n \notin x_{i_{0}}$. Next choose a distinct ξ^{\prime} with $m_{\xi^{\prime}}=m$ so that $\operatorname{dom}\left(p_{i}\right) \cap\left(\operatorname{dom}(\bar{p}) \cup \operatorname{dom}\left(p_{i_{0}}\right)\right) \subset \beta$ for

https://daneshyari.com/en/article/8906114

Download Persian Version:

https://daneshyari.com/article/8906114

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: adow@uncc.edu (A. Dow), shelah@math.rutgers.edu (S. Shelah).
 ${ }^{1}$ Current address: Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel.

