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A B S T R A C T

This paper presents a novel time-stepping scheme for the modelling of discrete ice-structure interaction. The
scheme extends the non-smooth discrete element modelling (NDEM) technique to enable compliant continuous
and discontinuous contacts. This increases the accuracy and expands the applicability range of the NDEM
technique related to ice-structure interaction problems. We derive the parameters representing the compliant
behaviour of contacts. The accuracy of the presented scheme for discontinuous contacts is compared to an
existing, simpler scheme that limits the contact force based on a maximum force assumption. The comparison
shows that the derived scheme results in more accurate contact forces, for the same time step size, as previously
applied NDEM schemes in ice-structure interaction. An example simulation is compared against ice tank tests of
a 4-legged, vertical-walled structure moving through a broken ice field.

1. Introduction

The reduction of the areal extent and thinning of the Arctic sea ice
cover will increase activity in waters where sea ice may occur. The
accurate prediction of the loads and resistance caused by sea ice is
important for safe and economical operations in these waters. Existing
calculation methods for loads from sea ice on structures often rely on
empirical formulas based on a limited range of full-scale data. Full-scale
data are limited to existing structures and the regions where they are
located. On top of this, the data are often incomplete and there is a high
uncertainty in the measured loads. Ice tank tests can be used to obtain
load data for specific types of structures or ice conditions. However, it is
often uncertain if and how the loads measured in the ice tank can be
scaled to full-scale equivalent loads. This is especially challenging for
load cases other than continuous level ice, such as floe ice or ice ridges.
Numerical modelling of ice-structure interaction can help, in combi-
nation with full-scale and model test data, to increase the under-
standing of occurring phenomena and ice failure modes, and can lead to
a more accurate prediction of the sea ice loads that may be en-
countered.

Interaction between sea ice and structures is a complicated process.
There are many factors that may contribute to the load and resistance
experienced by a structure interacting with sea ice, and that pose
challenges to the accurate numerical representation of the occurring
processes. For example:

• many simultaneously contacting ice bodies

• complicated, and (seemingly) random body geometries

• difficult to estimate and highly variable ice material properties

• complicated hydrodynamic effects

• complicated and continuous dynamic fractures and failures

This combination of factors makes ice-structure interaction different
from any other engineering problem. A numerical model will need to
simplify some or all of the above-mentioned factors. To what extent the
parameters can (and need to) be simplified depends on the processes to
be investigated and limiting factors such as the available computing
power and computation time, as well as the availability and accuracy of
input parameters. The broad range of occurring processes and the dif-
ferent requirements that may be put upon numerical models, has led to
a broad range of models and modelling types.

Numerical models for sea ice load estimation can broadly be divided
in continuum and discrete models, although there are also several
models that combine both modelling types. Among discrete ice-struc-
ture interaction models, a further distinction can be made based on the
time-stepping scheme that is used. This difference is often described as
smooth discrete element modelling (SDEM) versus non-smooth discrete
element modelling (NDEM). The difference between NDEM and SDEM
can be seen as the difference between implicit and explicit time in-
tegration (Servin et al. (2014)), allowing for much larger time steps,
while maintaining stable simulations, when using NDEM. The time
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steps can often be several orders of magnitude larger than those in
SDEM, but the processing of each time step is more computationally
expensive. NDEM requires the solution of a linear complementarity
problem (LCP) or a mixed linear complementarity problem (MLCP) at
each time step. Nevertheless, NDEM simulations are often considered
more efficient and are mostly chosen when real-time or near-real-time
simulations are required.

There are many publications describing SDEM models and model-
ling results of ice-structure interaction, going back to the early 90s.
Some examples can be found in Hopkins et al. (1991); Hocking (1992);
Løset (1994a,b); Tuhkuri and Polojärvi (2005); Polojärvi and Tuhkuri
(2009); Paavilainen et al. (2009); Liu et al. (2017). The application of
NDEM in ice-structure interaction has been more recent, and so far it
has been mostly applied to global broken ice-structure simulations.
Application examples of NDEM in ice-structure interaction can be found
in Konno and Mizuki (2006); Lubbad and Løset (2011); Metrikin
(2014); Alawneh et al. (2015); Yulmetov et al. (2016). In NDEM, con-
tacts between interacting bodies are often assumed to be infinitely
rigid. Therefore, contact forces cannot be defined in a physically correct
manner. This limitation can be remedied to some extent by introducing
an upper limit for the contact force based on a combination of contact
area and crushing pressure, as is done in Lubbad and Løset (2011) and
Metrikin (2014), where both papers use a slightly different method to
apply the upper limit.

In this paper, we derive a novel NDEM time-stepping scheme
starting from the Newmark-Beta method for differential equations
(Newmark (1959)). The new formulations are valid for compliant
continuous and discontinuous contacts. The position and velocity up-
date rules of the Newmark-Beta method are rewritten, and limits are
introduced in order to enable discontinuous contact modelling. Com-
pared to previously applied NDEM methods in ice-structure interaction
modelling, where only an upper limit for the contact force was defined
based on the current contact area, our new method takes the current
contact area as well as the expected change in the contact area into
account in determining the contact response, leading to a higher ac-
curacy of the predicted contact force for the same time step size. The
main properties of the NDEM time-stepping scheme are maintained in
the new method, i.e., an MLCP is solved in each time step, and large
time steps can be taken without affecting the stability. In addition, the
new method can now handle compliant as well as infinitely stiff con-
tacts. The method is implemented in the Simulator of Arctic Marine
Structures (SAMS), the product of Arctic Integrated Solutions (ArcISo); see
ArcISo (2018); Lubbad et al. (2018).

To the authors' knowledge, this is the first time such a time-stepping
scheme has been applied to ice-structure interaction modelling. In other
fields, such as soil modelling and physics simulations, similar methods
have been described and used Jean (1999); Moreau (1999); Lacoursière
(2007); Krabbenhoft et al. (2012); Tasora et al. (2013); Servin et al.
(2014). The difference between these methods and the method de-
scribed in this paper is that the current model assures energy con-
servation for continuous linear contacts. This is a property of the
Newmark-Beta method. The other methods are derived from an implicit
Euler or similar schemes, and therefore result in numerical damping.

In Section 2, we first derive a generalized form of the time-stepping
scheme that applies to rigid, compliant, continuous and discontinuous
contacts. Sections 3 and 4 describe how the needed contact parameters
can be obtained for continuous contacts, as would occur in a lattice
model, and discontinuous contacts, such as ice-ice and ice-structure
contacts. The accuracy of the derived scheme for discontinuous contacts
is compared against an existing scheme in Section 5. In Section 6 we
provide an application example, in which we compare the results from
the numerical model against data obtained in an ice tank test. Section 7
discusses some features of the numerical model and the application
example. Finally, Section 8 concludes the paper.

2. An implicit DEM time-stepping scheme

The proposed implicit time stepping-scheme expands the traditional
NDEM formulation to include compliant contact behaviour, which is
needed for the accurate simulation of ice-structure interactions. Similar
to the traditional NDEM formulation, the stability of the simulations is
independent of the time step size when using the proposed scheme, and
it is capable of efficiently solving a large network of simultaneous
contacts.

The following sections derive the MLCP, which needs to be solved at
each time step. The central assumption in the derivations is a constant
average acceleration within a time step. More particularly, this means
that we use the average force occurring within a time step in body
propagation. It does not mean, however, that the contact force itself is
assumed constant. This corresponds to a Newmark-Beta method
(Newmark (1959)) with parameters =γ 1

2 and =β 1
4 , yielding the

constant average acceleration method. We start by deriving some terms
for a continuous 1 degree of freedom (DOF) case, then add constraints
to the contact force to enable discontinuous contact modelling, and
finally compare the resulting formulation to previously used formula-
tions. The expansion to multiple degrees of freedom and frictional
contacts is explained in Appendix B, since this part is similar to pre-
viously applied methods.

2.1. Derivation of the time-stepping scheme for a continuous 1-DOF case

Fig. 1 shows the 1-DOF example case used for the derivations in this
section. In this example case, we use a generalized Kelvin-Voigt unit as
the contact model, in which the parallel spring and dashpot element can
be linear or nonlinear. The method can also be applied to other rheo-
logical elements, such as a Maxwell unit, following a similar procedure
as described in this section. In Fig. 1, m stands for the mass of the body,
δ for the penetration depth, δ ̇ for the penetration velocity, F δ δ( , )̇cont for
the contact force as a function of the penetration and the penetration
velocity, and Fext stands for an external (non-contact) force acting on
the body during time step Δt= tn+1− tn, where tn is the current time
and tn+1 is the time at the end of the time step. u, u ̇ and ü are the body
position, velocity and acceleration, respectively. For convenience, we
choose the axis system such that δ= u if δ≥ 0. In the derivation in this
section, we assume δ≥ 0, and thus =F δ δ F u u( , )̇ ( , ̇)cont cont . This is ex-
panded to a case in which u∈ℝ in Section 2.2. The equation of motion
of this system is:

+ =mu F u u F¨ ( , ̇)cont ext (1)

Assuming constant average acceleration within each time step, the
equation of motion can be discretized, and body positions and velocities
are updated according to Eqs. (2) and (3), which are the time-stepping
equations as used in the constant average acceleration method:

Fig. 1. General single DOF contact case.
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