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A B S T R A C T

For effective avalanche risk mitigation, numerical models with a correct description of snow rheology are
needed. Conventionally, velocity in snow flow experiments is inferred by cross-correlating the voltage signals of
paired sensors. The intention of this paper is to reconsider this problem to enhance processing of these data,
leading to more effective estimates of fluctuating velocity quantities. The algorithm consists of a wavelet de-
composition, a denoising step and a weighting method for the reconstituted signal. The resulting velocity time
series are both consistent and informative, providing confidence that one can analyse not only the mean velocity
profiles, but also the velocity distribution. Our approach is illustrated using a typical chute experiment under-
taken at Col du Lac Blanc in the French Alps. Not only has the mean velocity profile a more complex shape than
the bilinear one postulated from the results of the standard cross-correlation processing, but the probability
distribution functions of the velocity at different heights is much more continuous and dispersed, revealing
interesting new patterns of greater dynamical relevance.

1. Introduction

Snow avalanches constitute a significant natural hazard in mountain
environments, e.g. Fayes and Lakhdar (2000). In addition to socio-
economic considerations, effective risk analysis requires knowledge of
both the frequency of occurrence of events (Eckert et al., 2008, 2013)
and information on the dynamics (Keylock and Barbolini, 2001) to
evaluate vulnerability accurately (Keylock et al., 1999; Fuchs et al.,
2005; Eckert et al., 2012; Favier et al., 2014). Specifically, evaluating
runout distances and impact pressures as function of return period
(Ancey et al., 2004; Eckert et al., 2008, 2007) requires effective nu-
merical models of avalanche dynamics. These have progressed from
sliding block formulations (Voellmy, 1955; Perla et al., 1980; Dent and
Lang, 1983; Salm et al., 1990; Gauer et al., 2009) to continuum for-
mulations of the conservation of mass and momentum for an “ava-
lanche fluid”, with drag typically defined in terms of a Coulomb basal
resistance, a velocity-dependent resistance (Barbolini et al., 2000; Gray
et al., 2003), with additional terms also included for extensive and
compressive effects (Bartelt et al., 1999), or basal erosion (Naaim et al.,
2003; Christen et al., 2010).

Yet, there is still significant uncertainty in our knowledge of the
dynamics of these flows and, thus, the relevant flow physics. Insights

into the salient dynamics may be gained from analysing radar data for
the full flow field (Ancey and Meunier, 2004; Issler et al., 2005; Gauer
et al., 2008; Rammer et al., 2007; Sovilla et al., 2008; Kohler et al.,
2016), particularly with the development of higher resolution radar
systems (Vriend et al., 2013; Ash et al., 2014). However, more carefully
controlled, fundamental studies that aim to elucidate the properties of
flowing snow are still essential to facilitate the development of appro-
priate constitutive laws (Dent et al., 1998; Kern et al., 2004; Schaefer
et al., 2010).

The particular experiments that underpin this work differ from
earlier studies in that an attempt was made to establish a steady-state
flow in the chute to assist in constraining the rheology of flowing snow
(Bouchet et al., 2003; Rognon et al., 2008). From this work, three flow
regimes were identified as a function of slope: a decelerated flow below
about 33 °, an accelerated flow above about 41 ° and a steady and
uniform flow regime between these two limits. Increasing the slope
angle over a set of experiments gave an abrupt transition from zero
velocity below ∼33 ° to a constant value of ∼3m s −1. This constant
then increased steadily to ∼4m s −1 at ∼41 °. Beyond this limit, the
flow was accelerating. This behaviour may be contrasted with that of a
yield stress fluid where there is a continual increase in mean velocity
with slope angle beyond the yield stress threshold. Within the steady

https://doi.org/10.1016/j.coldregions.2018.03.004
Received 2 March 2016; Received in revised form 18 February 2018; Accepted 5 March 2018

* Corresponding author at: Sheffield Fluid Mechanics Group and Department of Civil and Structural Engineering, University of Sheffield, S1 3JD, UK.
E-mail address: hktruong1@sheffield.ac.uk (H.K. Truong).

Cold Regions Science and Technology 151 (2018) 75–88

Available online 09 March 2018
0165-232X/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0165232X
https://www.elsevier.com/locate/coldregions
https://doi.org/10.1016/j.coldregions.2018.03.004
https://doi.org/10.1016/j.coldregions.2018.03.004
mailto:hktruong1@sheffield.ac.uk
https://doi.org/10.1016/j.coldregions.2018.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coldregions.2018.03.004&domain=pdf


flow regime, the vertical mean velocity profile was fitted by a bilinear
function. Hence, in terms of the rheological behaviour, the dense flow
of dry snow appeared to be composed of two layers: a strongly sheared
basal layer made up of individual snow grains and a less sheared upper
layer made up of larger aggregates (Rognon et al., 2008).

To extract velocity information from experiments such as these,
significant processing of the raw voltage signals is necessary. The
standard approach has been to cross-correlate the signals from neigh-
boring sensors a known distance apart (Dent et al., 1998; Bouchet et al.,
2003) to derive a mean velocity at a point and, therefore, a mean ve-
locity profile. However, it is difficult using this approach to obtain in-
formation on the velocity fluctuations, which are critical for estimating
flow properties such as granular temperature and, therefore, for un-
derstanding the rheology of flowing snow.

To obtain such information from existing datasets, a new approach
to data processing is required. In this paper, we reinvestigate the
rheological behaviour of the dense flow of dry snow following the ap-
plication of our signal processing methodology. We first outline the
properties of the data considered, before processing them with the
standard Maximum Cross-Correlation (MCC) method. The new algo-
rithm, a wavelet-based denoising method, is then presented and its
efficacy compared to the MCC approach. On a typical Col du Lac Blanc
chute experiment, we are able to show that our approach produces
velocity signals that retain much greater information content with re-
spect to the fluctuations.

2. Data

Experiments were performed at the Col du Lac Blanc pass near the
Alpe d’Huez ski resort in the French Alps, located at an altitude of
2830m. This high altitude gives access to large amounts of natural
snow between January and April, and data were obtained during the
2004–2006 winters. The set-up and instrumental devices were pre-
viously described in Bouchet et al. (2003, 2004) and Bouchet (2003)
and the flow geometry and feeding system of the experimental proce-
dure were described in Rognon et al. (2008) and Rognon (2006). In
brief, one hundred experiments were undertaken with various slopes
(the inclination of the channel), flow depths and temperatures. Seventy-
five of them generated a sufficiently steady flow during which all
sensors were operational, making them amenable to analysis. Each
experiment was allocated an arbitrary two letter code that is also
adopted in this study to enable comparisons to be made between studies
using these data. In this paper we focus on the experiment denoted
“BU” as an illustrative example. It was performed with a flow depth of
H ∼ 9.5 cm, the air temperature was Tair=−10 ° C and the slope was
θ=37°, corresponding to a steady and uniform regime. Hence, it is at
an intermediate slope angle with respect to the bounds on a steady flow
(33°–41°), with a depth towards the upper end of the range observed for
steady flows of 4–12 cm (Rognon et al., 2008).

2.1. Velocity sensors and voltage signals

A description of the various sensors is provided to contextualise the
signal processing undertaken herein. The data acquisition system con-
sists of three different type of sensors: three depth sensors, H1, H2, H3,
and 13 pairs of velocity sensors, as well as a normal stress sensor and a
basal stress sensor (Schaefer, 2015). The latter were not used in the
analysis for this study explicitly, although both the depth sensors and
stress sensors were used to determine if a steady state flow had devel-
oped (Rognon et al., 2008, chap. 3).

The height and stress sensors were located on the chute centre-line
and the velocity sensors in a vertical column within the working section
(where the steady-state profile was obtained), and on the outside of the
chute, with data acquired at a frequency of 10 kHz. A velocity sensor is
made from an upstream and a downstream pair of photodiodes and
phototransistors separated by a distance, d=7.20mm (Fig. 2). The

sensors operate by emitting infrared light from a photodiode. A part of
the emitted infrared beam spreads in the snow and another part is re-
flected back to the phototransistor, which acts as a receiver (Dent et al.,
1998; Bouchet et al., 2003). Consequently, the raw data are voltage
signals generated by the reflection of infrared light, and the nature of
the resulting signals is related to the properties of material reflection as
well as the material morphology. Snow particles passing near the sensor
cause a significant departure from the 5 V baseline voltage. For each
sensor location (height), an upstream voltage signal, Xt, and a down-
stream, Yt, are used to estimate the flow velocity over a period of about
8 s (Section 3). This estimation is based on the time lag that gives the
greatest similarity between Xt and Yt and the separation distance be-
tween upstream and downstream sensors.

The times series of flow depths were used to determine the duration
of the experiment (shown below in Fig. 3), as well as the number of
useful velocity sensors (those that remained below the mean flow depth
for the duration of the experiment).

3. Maximum Cross-Correlation (MCC) approach to velocity
estimation and optimal window size determination

A steady and uniform regime was established so that rheological
inferences could be made. A steady flow is one where the depth-in-
tegrated velocity does not exhibit a trend through time — it is not ac-
celerating or decelerating. A uniform flow is one where the mean ve-
locity profile remains constant in shape rather than evolving in time,
meaning that properties such as mean shear rate can be inferred from
the velocity profile in a meaningful fashion. For experiments with a
steady and uniform flow, there is an initial increase in flow depth as the
front moves through the working section, a region with constant mean
behaviour and then a waning flow. This structure to the dynamics was
used as a constraint to identify the start and end of the data series
analysed (Fig. 3). For experiment BU, over the various heights, the
duration of the steady flow period was between 7.37 s and 14.68 s, with
the minimum used to ensure a constant analysis duration for all heights.

The inclination of the channel and the location of the in-
strumentation were such that the flow direction was from right to left.
Consequently, a constraint on the analysis is that the peak in the cross-
correlation of the upstream signal, X(t), and downstream signal, Y(t),
must have a lag that respects this directionality. The maximum cross
correlation (MCC) method has been adopted previously for studying the
velocity characteristics of flowing snow (Dent et al., 1998; Rognon
et al., 2008) and gives the time lag, Δtξ, for which Xt most resembles (in
a linear sense) the series +Yt tΔ ξ :
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velocity measurement points
provided the length of both voltage series is n. A crucial issue with this
technique is that the MCC depends on the window size for correlation,
nwin. This parameter cannot be chosen arbitrarily as its influence is
particularly notable when attempting to recover the dynamics of the
velocity series.

3.1. New window size for correlation

In previous work, e.g. Rognon et al. (2008), the velocity fluctuations
were disregarded and nwin=1000 (i.e. 0.1 s) was used for correlation.
Such a long period for the window over-smoothes the dynamics and
while it is eminently suitable for evaluating the mean velocity, it proves
to be unsuitable for estimating fluctuating velocities. Given that nwin
over-smoothes the data, much smaller window sizes should be con-
sidered in order to study the influence of the window on the velocity
estimation, and to determine the optimal window size. Fig. 4 shows the
MCC method applied to one pair of voltage signals using different
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