
Contents lists available at ScienceDirect

Cold Regions Science and Technology

journal homepage: www.elsevier.com/locate/coldregions

Mathematical solution of steady-state temperature field of circular frozen
wall by single-circle-piped freezing

Xiang-dong Hua,b, Tao Fanga,b,⁎, Yan-guang Hanc

a Key laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China
bDepartment of Geotechnical Engineering, Tongji University, Shanghai 200092, China
c Shanghai Tunnel Engineering Co.,Ltd., Shanghai 200232, China

A R T I C L E I N F O

Keywords:
Mathematical model
Steady-state temperature field
Analytical solutions
Single-circle-piped freezing
Thickness of frozen wall
Average temperature

A B S T R A C T

Ground temperature distribution is one of the fundamental problems in the theory of artificial ground freezing.
For the most widely applied freezing scheme, single-circle-piped freezing, there is only one analytical solution up
to now, for the situation that the core is totally frozen. This paper gives a mathematical model to the steady-state
temperature field of circular frozen wall by single-circle-piped freezing with unfrozen core. Then, the solutions
are theoretical derived with some hypothesis, using conformal mapping and boundary separation method, as
well, the same methods has been verified by the specific single-row-piped solution – Bakholdin's solution. After
that, comparison between the analytical solutions and the numerical analysis is in good consistency. In addition,
the methods to calculate the thickness and the average temperature of circular frozen wall are present.

1. Introduction

The first recorded application of artificial ground freezing (AGF)
was on a mineshaft in Swansea, South Wales circa 1862, although the
method was patented by Germany engineer F. H. Poetsch in 1883. At
present, AGF technique is a mature construction method, which is
widely used in fields like mine engineering, tunneling engineering, re-
mediation of subsurface contaminants, and ground source heat pump,
etc. (Vitel et al., 2016; Marwan et al., 2016; Wagner, 2013; Zheng et al.,
2016).

For structure design and construction management as well as risk
control of freezing projects, some engineering parameters, such as the
thickness and the average temperature of the frozen wall, are of great
significance (Jiang et al., 2012). Hence, both for designers and for
constructors, it is necessary to master the temperature distribution and
its developments. Among varied methods, the analytical solution based
on temperature distribution models meet with great favor due to utility.

Some analytical solutions of steady-state temperature field in AGF
have been derived since the middle of last century. In Russia, Trupak
(1954) proposed the calculation methods to a single-pipe freezing and
single-row-piped freezing which is simple numeral superposition by
single-pipe's solution. Compared the thermal problems with hydraulic
ones, Bakholdin (1963) proposed the analytical solutions to single-row-
and double-row- piped freezing. Sanger and Sayles (1979) divided the
freezing process into three stages, and deduced thermal calculations for

each stage. Tobe and Akimoto (1979) derived an analytical solution to
temperature field of multi-piped freezing. Hu et al. (2008a), Hu et al.
(2008b), Hu and Zhao (2010), Hu (2010), Hu et al. (2011), Hu et al.
(2012) refined the above-mentioned solutions and studied their appli-
cations. By means of superposition of potential (Pollack and Stump),
Hu's team has pushed forward with the studies. Hu et al. (2013) pre-
sented single-circle-pipe freezing with frozen core. Then, Hu et al.
(2016) gave the steady-state solutions of multi-piped freezing while Hu
et al. (2017) derived the solutions to three-row-pipe freezing.

In practice, circle-piped freezing is the oldest, the most classical, but
the most widely used type in AGF, especially for mine shaft sinking.
However, for more than 150 years since the first application of the in-
novation in 1862, there has been no solution for the temperature field
of single-circle-piped freezing with unfrozen core. To solve this cen-
turial problem, this paper gives an analytical solution, using conformal
mapping and boundary separation method for harmonic equations.
Then, applications of the solution have been derived.

2. Analytical theory

2.1. Steady-state conduction

The original three-dimensional heat conduction problem can be
simplified as a two-dimensional one in a real AGF project in that the
temperature gradient along the freezing pipe is gentle (Pimentela et al.,
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2012). According to Carslaw & Jaeger, the temperature field caused by
conduction is mainly discussed here as the other two (radiation and
convection) do not contribute significantly to the formation of tem-
perature field (Carslaw and Jaeger, 1959). Then, by the first law of
Fourier heat conduction (Latif, 2009), the equation of two-dimensional
steady-state heat conduction is:
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where k is the coefficient of thermal conductivity of soil, T the dis-
tribution of temperature field, and x, y coordinates, respectively.

We assume that the soil is isotropic in thermal physics, so k is
identical in all directions. In addition, k is the same once the tem-
perature drops below the freezing point (this assumption approximates
to the real case except when the phase change of soil occurs). Then, (1)
can be simplified as follows:
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whose polar form can be written as:
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Now the original engineering problem has been converted to the
solving of a plain Laplace equation under specified boundaries.

2.2. Model of single-pipe freezing

The model of single-pipe freezing in infinite field is shown in Fig. 1.
Its mathematical model is as follows:
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The general solution to the above harmonic equation obtained using
the method of separation of variable is given (Chen et al., 2003) below:
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where c10, c20, am, bm, c1m, c2m are undetermined coefficients which are
calculated by the boundary condition.

Expand the boundary conditions according to the Fourier series and
constants not dependent to θ where am=0 and bm=0. Then in-
troducing the boundary conditions of the freeze pipes and frozen soil

into Eq. (5) gives:
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This is Trupak's solution to the temperature field of single-piped
freezing (Trupak, 1954).

3. Single-circle-piped freezing with unfrozen core

3.1. Mathematical model

The boundary of the frozen ground appears wavy in shape after the
closure of frozen soil columns, so the model of single-circle-pipe
freezing with unfrozen core is shown in Fig. 2.

The mathematical expressions of the model are:
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, ;the condition of freezing pipes

, ;the inner boundary condition of the frozen soil

, ;the outer boundary conditon of the frozen soil
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where n is the total number of freezing pipes and j covers the integers
between 0 and n-1.

Notation

k thermal conductivity
l distance between two freezing pipes
n number of freezing pipes
R polar radius in Z-plane
R0 radius of freezing pipe
R1 polar radius of the inner boundary of frozen soil wall
R2 polar radius of the freezing-pipe circle
R3 polar radius of the outer boundary of frozen soil wall in

the master section
R3’ polar radius of the outer boundary of frozen soil wall in

the interface section
Rw radius of freezing pipe in ζ-plane
t time
T distribution of temperature field
T0 temperature at the boundaries of the frozen soil, i.e. the

freezing temperature of the soil
Tcp average temperature of Bakholdin's solution
Tavgξ average temperature of the frozen wall in ζ-plane
TavgZ average temperature of the frozen wall in Z-plane
Tf temperature of the freezing pipes
u, v coordinate in ζ-plane
x, y coordinate in Z-plane
Z object plane
θ polar angle
ξ thickness of the straight frozen soil wall in the master

section
ξ’ thickness of the straight frozen soil wall in the interface

section
ξ1 thickness of frozen wall on the inner side in ζ-plane
ξ2 thickness of frozen wall on the outer side in ζ-plane
ζ image plane

Fig. 1. Model of single-pipe freezing.
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