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The total pressure a rock element is subjected to in Earth’s lithosphere undergoing deformation may 
deviate from the lithostatic pressure. Despite many decades of research, the significance of this pressure 
deviation is still debated. Here, we apply the micromechanics approach based on the generalized Eshelby 
inclusion solutions for anisotropic power-law viscous materials to investigate the pressure deviation in 
rheologically heterogeneous rocks. We regard a rheologically distinct element (RDE) as a microscale 
heterogeneous inclusion which is embedded in and interacts with the heterogeneous macroscale medium. 
The latter is represented by a homogeneous-equivalent medium (HEM) with its effective rheology 
obtained self-consistently from the rheological properties of all constituent elements making up the 
ambient macroscale material embedding the RDE. Partitioning equations from the generalized Eshelby 
solutions and developed numerical implementations allow the pressure deviations inside and around the 
RDE to be calculated with quasi-analytical accuracy. We prove formally for limiting cases and demonstrate 
numerically that the maximum pressure deviation in and around any RDE is on the same order as the 
deviatoric stresses in the ambient medium or in the element for general power-law viscous materials, 
isotropic or anisotropic. The pressure deviation fields related to a RDE in an anisotropic HEM are lower 
than the pressure deviation fields related to the same RDE in an isotropic HEM. Pressure deviations due 
to an initial pressure anomaly are insignificant considering the viscoelastic interaction between an RDE 
and the HEM. Our results suggest that pressure deviations in Earth’s lithosphere are insignificant for 
metamorphic processes if the differential stress in Earth’s lithosphere is on a few hundred MPa level. 
Higher pressure deviations require correspondingly greater differential stresses in the lithosphere. They 
may be generated by short-term strong elastic interactions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Pressure is an important variable in nearly all geological pro-
cesses. Pressure estimates from mineral assemblages using various 
geothermobarometers (e.g., Spear, 1993) are routinely used as a 
proxy for the depth at which the assemblages were formed. This 
in turn is used to build geodynamic models for the geological pro-
cess. However, it has been realized for many decades (Gerya, 2015;
Mancktelow, 2008 and references therein) that tectonic deforma-
tion may cause the local pressure in a volume of rock to differ 
from the lithostatic pressure. This pressure difference has been 
called the ‘tectonic overpressure’ or ‘underpressure’, depending on 
whether the difference is positive or negative, in the literature. 
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In this paper, we shall use tectonic pressure deviation or simply 
pressure deviation to refer to the pressure difference caused by de-
formation because only pressure deviations from a mean value are 
relevant in petrological records whereas the lithostatic pressure is 
unknown a priori. As established thermodynamic principles dic-
tate that mineral assemblages are related to the total pressure, to 
convert geobarometric data to depth, it is critical to know how 
significant the error range may be due to the presence of possible 
tectonic pressure deviation. This includes the level of the tectonic 
pressure deviation, its variation in space from one geological unit 
to another at a given scale and across different scales, and the 
timespan an elevated pressure deviation (if generated) may be sus-
tained. Although these problems have been tackled for over two 
decades through analytical (e.g., Mancktelow, 2008, 1995, 1993; 
Schmalholz et al., 2014b) and numerical modeling approaches (e.g., 
Burov et al., 2014; Li et al., 2010; Reuber et al., 2016), the results 
of these works are still controversial and inconsistent.
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These works have shown quite clearly that the magnitude 
and variation of the tectonic pressure deviation are rather sensi-
tive to the model geometry, boundary conditions, rheologies and 
rheological parameters assigned to the model elements. Simple 
models based on Jaeger (1969, pp. 140–149) that have analyti-
cal solutions have been applied to natural transpressional zone 
deformation (Robin and Cruden, 1994) and extrusion or conver-
gent channel systems (Mancktelow, 2008, 1995, 1993; Raimbourg 
and Kimura, 2008) and GPa-level pressure deviations have been 
predicted in the deforming zone (Mancktelow, 2008). However, 
these treatments regard the transpressional zone or the conver-
gent channel as a tabular ‘deforming zone’ sandwiched between 
rigid or nearly rigid walls (country rocks) moving at a constant 
velocity relative to each other. The interface between the country 
rocks and the deforming zone is assumed to be fixed to mate-
rial and is non-slippery. These assumptions lead to unrealistically 
strong mechanical interactions between the deforming zone and 
the country rocks and are, as we argue in this paper, responsible 
for the predicted GPa-level pressure deviations. Many 2D numer-
ical models limited to elements of isotropic rheologies for large 
scale collisional tectonic scenarios (e.g., Burg and Gerya, 2005;
Burov et al., 2014; Li et al., 2010; Schmalholz et al., 2014a) have 
considered more reasonable boundary conditions. Differing results 
have been obtained with some getting ‘significant’ (>20% of the 
lithostatic value) (e.g., Burg and Gerya, 2005; Schmalholz et al., 
2014a) and others predicting ‘insignificant’ (<20% of the litho-
static value) pressure deviation (e.g., Burov et al., 2014; Li et 
al., 2010). As each numerical modeling investigation uses a dis-
tinct computational procedure, it is not possible (e.g., Post and 
Votta, 2005) to identify how the inconsistency has arisen. It seems 
that the model results depend strongly on the loading condition 
and the choice of rheology and rheological parameters. The pres-
sure deviation problem has also been analyzed using 2D inclusion 
solutions for isotropic Newtonian materials (Mancktelow, 2008;
Moulas et al., 2014; Schmid and Podladchikov, 2003). Mancktelow
(2008) concluded that the pressure deviations related to strong 
inclusions are of order 1–2 times the maximum shear stress the 
strong material can support. How the conclusion may be affected 
by power-law rheology, rheological anisotropy, and 3D inclusion 
deformation, which are all more relevant to natural deformation, 
is unknown.

In this paper, we apply a full mechanical approach – the gen-
eralized Eshelby’s inclusion solutions for power-law viscous ma-
terials (Jiang, 2016, 2014) to investigate the pressure deviation 
in natural deformation. This approach avoids unrealistic mechan-
ical interactions caused by assumptions on rheological behaviors 
and boundary conditions and addresses the 3D deformation and 
anisotropic viscosity. Specifically, we regard the ductily-deforming 
rock masses undergoing metamorphism as a composite material 
made of rheologically distinct elements (RDEs). A RDE can repre-
sent any rheological heterogeneity, such as a distinct lithological 
unit or structural element like a ductile shear zone. We consider 
the long-term deformation with characteristic time scales on Ma, 
much greater than the viscous relaxation time (discussed later) 
so that elastic behaviors can be ignored. All RDEs and the com-
posite material as a whole are assumed to be power-law viscous. 
Supposing that a large representative volume of this ‘lithosphere 
material’ is subjected to a given macroscale deformation, we are 
concerned with how the pressure varies from one RDE to another 
and deviates from the bulk ambient pressure. To obtain the pres-
sure deviation inside and around any RDE from the ambient pres-
sure, we regard the RDE as an Eshelby inclusion embedded in the 
medium. The macroscale medium surrounding the RDE is rheolog-
ically heterogeneous, but in micromechanics it is represented by a 
hypothetical homogeneous-equivalent medium (HEM) whose rhe-
ology is obtained self-consistently from the rheological properties 

Fig. 1. The Eshelby inclusion problem of an ellipsoidal RDE in a HEM and symbols 
used in partitioning Eqs. (1) and (2). CE

i jkl and Ci jkl are the viscous stiffness of the 
RDE and HEM respectively. The far-field mechanical state is defined by upper case 
symbols �, E, W, and P , denoting respectively the deviatoric stress, strain rate, vor-
ticity, and pressure. The constant mechanical fields inside the ellipsoid (the interior 
fields) are denoted by corresponding lower case symbols, σ , ε, w, and p, and the 
difference fields are represented by ̃σ = σ −�, w̃ = w −W, and ̃p = p − P . The me-
chanical fields around the inclusion (exterior fields) vary with the position vector x
and are expressed by p(x) etc. and ̃p(x) = p(x) − P .

of all constituent elements contained in a representative volume 
element (RVE) that embeds the RDE. Generalized Eshelby inclusion 
solutions for viscous power-law materials (Jiang, 2016, 2014, 2013) 
relate formally the local mechanical fields (including pressure) in 
and around the RDE to the macroscale mechanical fields. Pressure 
deviations inside and around the RDE can be computed with quasi-
analytical accuracy using the partitioning equations from the Es-
helby inclusion solutions. Because the formalism considers 3D de-
formation, non-linear viscous rheology, and rheological anisotropy, 
we can systematically investigate the pressure deviation as func-
tions of these variables. As a thorough treatment of the generalized 
Eshelby solutions is given in Jiang (2016, 2014), only the partition-
ing equations used in this paper are presented in the following 
section.

2. Partitioning equations

The classical Eshelby inclusion/inhomogeneity problem is il-
lustrated with Fig. 1. Initially, Eshelby (1959, 1957) solved for 
the elastic field inside and outside an isolated ellipsoidal domain 
which he called an “inclusion”, if it has identical elastic proper-
ties as the surrounding medium, and an “inhomogeneity” if the 
domain has distinct elastic properties. For simplicity, we use “in-
clusion” to refer to any heterogeneous element in a composite 
material in this paper following Jiang (2016, 2014) unless a distinc-
tion must be made for clarity. Eshelby’s elegant point-force method 
and equivalent-inclusion approach have been extended to general 
anisotropic linear elastic materials as reviewed and summarized in 
Mura (1987) and general anisotropic linear viscous materials (see 
reviews of Jiang, 2016, 2014). The partitioning equations for the 
mechanical fields inside the inclusion are given in the following 
set (Jiang, 2016, Eqs. (12) there):

ε̃ = [
Jd − S−1]−1 : C−1 : σ̃ (1a)

w̃ = � : S−1 : ε̃ (1b)

p̃ = � : C : S−1 : ε̃ (1c)

In Eqs. (1), the sign “:” stands for double-index contraction of 
two tensors. Lowercase and uppercase symbols (Fig. 1) stand for 
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