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Joint International Ocean Discovery Program and International Continental Scientific Drilling Program 
Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, 
density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the 
peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-
bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. 
Velocity, density, and porosity values for the suevite are 2900–3700 m/s, 2.06–2.37 g/cm3, and 20–35%, 
respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 
3650–4350 m/s, density measurements of 2.26–2.37 g/cm3, and porosity measurements of 19–22%. We 
associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid 
emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The 
uplifted granitic peak ring materials have values of 4000–4200 m/s, 2.39–2.44 g/cm3, and 8–13% for 
velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite 
which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring 
velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with 
numerical model predictions for peak-ring formation where the lithologies present within the peak ring 
represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with 
previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene 
sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post 
impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100–165 m on the 
top of the peak ring but 200 m in the central basin, suggesting that suevite flowed downslope from 
the collapsing central uplift during and after peak-ring formation, accumulating preferentially within the 
central basin.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Present in the two largest classes of impact craters, peak-ring 
craters and multi-ring basins, peak rings are interpreted to de-
velop from gravitational collapse of a central peak, and exhibit a 
circular ring of elevated topography interior of the crater rim (e.g., 
Grieve et al., 1981; Morgan et al., 2016). Surface topography can 
be observed for craters on the Moon and other rocky planets, but 
on Earth craters can also be characterized at depth by boreholes 
and geophysical studies. The Chicxulub impact crater is the only 
known terrestrial crater that preserves an unequivocal peak ring 
(e.g., Morgan et al., 1997, 2000), and can provide important in-
formation related to peak-ring formation with implication for how 
impacts act as a geologic process on planetary surfaces.

The Chicxulub peak ring has been imaged by a grid of seismic 
reflection profiles (Fig. 1), which constrain a morphological fea-
ture that rises ∼0.2–0.6 km above the floor of the central basin 
and annular trough and is overlain by ∼0.6–1.0 km of post-impact 
sedimentary rock (Morgan et al., 1997; Gulick et al., 2008, 2013) 
(Fig. 2b). Tomographic velocity images associate the uppermost 
0.1–0.2 km of the peak ring with low seismic velocities (Fig. 2), 
which were interpreted as a thin layer of highly porous allogenic 
impact breccias (Morgan et al., 2011). Velocities 0.5–2.5 km be-
neath the peak-ring surface are reduced compared to adjacent 
material in the annular trough and central basin (Morgan et al., 
2000, 2002), and were interpreted as highly-fractured basement 
rocks (Morgan et al., 2000), as predicted by numerical simulations 
of peak-ring formation (e.g., Collins et al., 2008).

The International Ocean Discovery Program and International 
Continental Scientific Drilling Program (IODP/ICDP) Expedition 364 
drilled and cored the Chicxulub peak ring and overlying post-
impact sedimentary rock from depths 505.7–1334.7 m below the 
seafloor (mbsf) (Morgan et al., 2017). Hole M0077A (Fig. 1) pro-
vides the ground-truth information calibrating our geophysical 
data and interpretations. Here we report the first P-wave veloc-
ity, density, and porosity measurements of the Chicxulub peak ring 
at scales ranging from centimeters to meters. We combine these 
results with existing geophysical data to gain insight into deposi-

tion of suevite (impact melt-bearing breccia (Stöffler and Grieve, 
2007)) and impact melt rock (crystalline rock solidified from im-
pact melt (Stöffler and Grieve, 2007)), and into the physical state 
of the peak-ring rocks.

2. Datasets

2.1. Surface seismic surveys

Deep-penetration seismic reflection surveys that image the 
Chicxulub impact crater were acquired in 1996 (Morgan et al., 
1997) and 2005 (Gulick et al., 2008). These data include regional 
profiles and a grid over the northwest peak-ring region. Air gun 
shots fired for these two surveys were also recorded by ocean bot-
tom and land seismometers (Fig. 1). The seismic reflection images 
are most recently summarized in Gulick et al. (2013). Morgan et al.
(2011) used wide-angle seismic data recorded on the 6-km seismic 
reflection hydrophone cable (streamer) to produce high-resolution 
full-waveform inversion (FWI) velocity models of the shallow crust. 
The surface seismic data predicted the top of the peak ring at Hole 
M0077A at 650 mbsf (Fig. 2b).

In this study we focus on comparisons of Expedition 364 results 
with seismic reflection images and FWI velocity models. Vertical 
resolution in seismic reflection images (Fig. 2b) at the top of the 
peak ring is ∼35–40 m (one quarter of the ∼150-m seismic wave-
length (e.g., Yilmaz, 1987) for a frequency of 20 Hz and velocity 
of 3000 m/s, which is the average P-wave velocity in the suevite). 
Spatial resolution for FWI velocity models at the top of the peak 
ring (Fig. 2a) is ∼150-m (half the ∼300-m seismic wavelength 
(Virieux and Operto, 2009) for the highest FWI frequency of 10 Hz 
and velocity of 3000 m/s (Morgan et al., 2011)).

2.2. Core measurements

P-wave and Moisture and Density (MAD) measurements were 
made on sample plugs with average volumes of ∼6 cm3 at ∼1 m 
spacing throughout all the cores. P-wave velocities were measured 
using a source frequency of 250 kHz (wavelength of ∼1 cm at 
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