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Porosity waves arise naturally from the equations describing fluid migration in ductile rocks. Here, we 
show that higher-dimensional porosity waves can transport mass and therefore preserve geochemical 
signatures, at least partially. Fluid focusing into these high porosity waves leads to recirculation in 
their center. This recirculating fluid is separated from the background flow field by a circular dividing 
streamline and transported with the phase velocity of the porosity wave. Unlike models for one-
dimensional chromatography in geological porous media, tracer transport in higher-dimensional porosity 
waves does not produce chromatographic separations between relatively incompatible elements due 
to the circular flow pattern. This may allow melt that originated from the partial melting of fertile 
heterogeneities or fluid produced during metamorphism to retain distinct geochemical signatures as they 
rise buoyantly towards the surface.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Fluid migration in ductile rocks controls important geological 
processes such as melt segregation and fluid expulsion during re-
gional metamorphism. Fluid production by partial melting and de-
volatilization leads to a percolating fluid network that allows for 
the segregation of fluid by porous flow at very low porosities
(von Bargen and Waff, 1986; Cheadle, 1989; Wark and Watson, 
1998; Miller et al., 2014; Ghanbarzadeh et al., 2014). Fluid seg-
regation is driven by the buoyancy of the fluid and resisted by 
viscous compaction of the solid matrix (McKenzie, 1984; Scott and 
Stevenson, 1984; Fowler, 1985a). Fluid flow in rocks is predom-
inantly vertical, because the segregation velocity of the fluid is 
significantly faster than the solid state creep velocity of the ductile 
rocks (Phipps Morgan, 1987; Sparks and Parmentier, 1991; Katz, 
2008).

Fluid production in heterogeneous rocks leads to spatial varia-
tions in fluid content that may evolve into porosity waves, which 
migrate upwards at a velocity greater than the segregation veloc-
ity of the buoyantly rising background fluid. Porosity waves are an 
ubiquitous feature of the equations governing melt migration by 
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porous flow (Spiegelman, 1993c). Porosity waves are also thought 
to arise from fluid expulsion during regional metamorphism (Bai-
ley, 1990; Thompson and Connolly, 1990; Connolly, 1997, 2010; 
Tian and Ague, 2014; Skarbek and Rempel, 2016) and in the con-
text of brine and hydrocarbon migration in sedimentary basins 
(McKenzie, 1987; Connolly and Podladchikov, 2000; Appold and 
Nunn, 2002; Joshi and Appold, 2016). In the aforementioned appli-
cations it is important to understand if solitary waves are effective 
carriers of energy, mass and geochemical signals. Here we revisit 
the viability of transport by porosity waves.

An idealized limit of compaction-driven porosity waves are so-
called solitary porosity waves, which propagate at constant phase 
velocity, λ, without change in shape (Fig. 1a). In solitary waves 
the decompaction due to fluid overpressure at the front is per-
fectly balanced by compaction due to fluid underpressure in the 
back (McKenzie, 1984; Scott and Stevenson, 1984, 1986; Barcilon 
and Richter, 1986; Wiggins and Spiegelman, 1995; Simpson and 
Spiegelman, 2011). In one dimension, the fluid velocity within the 
solitary wave is increased relative to the background, but always 
remains lower than the phase speed of the solitary porosity wave 
(Fig. 1b). Therefore, no sustained mass transport occurs in one-
dimensional solitary porosity waves (Richter and Daly, 1989; Bar-
cilon and Lovera, 1989; Watson and Spiegelman, 1994; Spiegelman, 
1994; Liang, 2008; Solano et al., 2014). This analysis of the one-
dimensional case has led to the assumption that porosity waves in 
general cannot transport mass.
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Fig. 1. One dimensional solitary porosity wave with phase speed, λ = 4. a) A high accuracy numerical solution for a dimensionless, one dimensional solitary porosity wave 
from Simpson and Spiegelman (2011): Porosity, φ , is scaled to the background porosity, φ0 = 0.001. Fluid pressure, P is scaled by the pressure due to buoyancy over the 
characteristic length scale, �ρgδ0. In the ambient background P is the lithostatic pressure, Pl . The upward volumetric flux of the fluid, qf , and its vertical velocity w f are 
scaled to the background separation flux, q0. Both qf and w f = qf/φ are elevated within the solitary porosity wave. b) Phase and vertical fluid velocities as functions of 
amplitude, A, of the porosity increase at the center of the solitary porosity wave. All calculations use the constitutive exponents (n, m) = (2, 1), see Section 2.1 for definition.

In addition, fluid transport by porous flow in local chemi-
cal equilibrium leads to chromatographic separation of chemical 
elements according to their compatibility within the solid ma-
trix (McKenzie, 1984; Navon and Stolper, 1987; Richter and Daly, 
1989). A perfectly incompatible element travels at the velocity of 
the fluid, whereas the effective transport velocity of a trace ele-
ment decreases relative to the fluid velocity with increasing com-
patibility. In the limit of perfect compatibility, the trace element 
travels with the solid. In one dimension, this chromatographic sep-
aration destroys any geochemical signature associated with the 
production of the fluid (Liang, 2008).

Fluid transport with porosity waves and chromatographic sepa-
rations appear to make it impossible to preserve the distinct geo-
chemical signature associated with the source region of the fluid. 
This is illustrated by the numerical simulation shown in Fig. 2. 
Here, fluid production has locally increased porosity and is ini-
tially co-located with two associated trace elements. Although the 
region of elevated porosity and trace element concentration are 
initially co-located, they become separated during fluid migration. 
As the trace element signatures abandoned by the porosity wave 
slowly migrate upwards, the continuous exchange between the 
fluid and solid separates tracers according to their compatibility. 
This implies that transport induced by the increase in fluid supply 
due to local fluid production carries with it no distinct geochemi-
cal signature.

However, the conclusion that solitary porosity waves do not 
transport mass is based upon one dimensional studies of melt 
transport. It is well known that one-dimensional porosity waves 
are unstable in two and three dimensions and break up into sets 
of cylindrical or spherical porosity waves (Scott and Stevenson, 
1986; Wiggins and Spiegelman, 1995). Here we show that tracer 
transport in such higher dimensional porosity waves is dramati-
cally different that in one dimension.

2. Fluid flow in two dimensional porosity waves

Models for fluid flow in ductile rocks assume a two phase mix-
ture comprised of incompressible solid and melt phases. The flow 
of the fluid is described by Darcy’s law and the solid matrix under-
goes viscous deformation, often assumed to be Newtonian (McKen-
zie, 1984; Scott and Stevenson, 1984; Fowler, 1985a). Due to the 
intrinsic weakness of ductile rocks, porosities are very small. This 
allows significant simplifications to the governing equations that 
describe the two phase mixture. These simplified equations admit 
solutions in the form of solitary waves as shown in Figs. 1 and 2. 

The substantial literature on solitary wave solutions provides the 
ideal framework for discussing mass transport in porosity waves.

2.1. Governing equations in the small porosity limit

The dimensionless governing equations for the evolution of a 
porosity anomaly in a uniform background, in the limit of small 
porosities, are

∂φ

∂t
= P

ξφ

, (1a)

−∇ · Kφ∇P + P
ξφ

= −∇ · Kφ ẑ, (1b)

where P and φ are the dimensionless fluid pressure and poros-
ity respectively and ẑ is the upward pointing unit vector. Here we 
write (1a) in terms of the partial derivative rather than the mate-
rial derivative and assume no net translation of the solid. For the 
full dimensional governing equations see Appendix A.1.

The dimensionless permeability, Kφ , and effective viscosity, ξφ , 
are functions of porosity based on phenomenological laws,

Kφ = φn and ξφ = φ−m, (2a,b)

where the values of the exponents are typically n ∈ [2, 3] and m ∈
[0, 1] (Wark and Watson, 1998; Simpson and Spiegelman, 2011).

The porosity has been scaled to the characteristic porosity, φ0, 
of the ambient background outside the porosity anomaly. The nat-
ural length scale that arises from the governing equations is the 
compaction length of the background, δ0 = √

K0ξ0/μ, where K0
and ξ0 are permeability and effective viscosity of the background 
and μ is the fluid viscosity.

The fluid pressure, P , is scaled by the pressure due to buoyancy 
over a compaction length, �ρgδ0, where �ρ = ρs −ρf is the den-
sity difference between solid and fluid, and g is the gravitational 
acceleration. The sign of P therefore indicates over and underpres-
sure. Time is scaled by the segregation time δ0/w0, where the 
segregation velocity w0 = Kφ�ρg/φ0μ, is induced by the buoy-
ancy of the fluid. The characteristic time scale is the time required 
for a percolating fluid to traverse a compaction length in the back-
ground.

The governing equations (1) admit solitary wave solutions in 
one, two and three dimensions. Fig. 3a shows porosity contours 
and the fluid pressure for a two-dimensional solitary porosity 
wave. Due to buoyancy, the fluid in the upper half of the soli-
tary porosity wave is above lithostatic pressure and dilates the 
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