
Earth and Planetary Science Letters 481 (2018) 171–176

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/epsl

North Atlantic climate model bias influence on multiyear predictability

Y. Wu a,b,∗, T. Park a,c, W. Park a, M. Latif a,d

a GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
b Second Institute of Oceanography, SOA, Hangzhou, China
c Korea Polar Research Institute, Incheon, South Korea
d Excellence Cluster “The Future Ocean”, Kiel University, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 January 2017
Received in revised form 6 July 2017
Accepted 6 October 2017
Available online 5 November 2017
Editor: H. Stoll

Keywords:
multiyear predictability
model bias
Atlantic Meridional Overturning Circulation 
(AMOC)
Atlantic Multidecadal Variability (AMV)

The influences of North Atlantic biases on multiyear predictability of unforced surface air temperature 
(SAT) variability are examined in the Kiel Climate Model (KCM). By employing a freshwater flux 
correction over the North Atlantic to the model, which strongly alleviates both North Atlantic sea surface 
salinity (SSS) and sea surface temperature (SST) biases, the freshwater flux-corrected integration depicts 
significantly enhanced multiyear SAT predictability in the North Atlantic sector in comparison to the 
uncorrected one. The enhanced SAT predictability in the corrected integration is due to a stronger 
and more variable Atlantic Meridional Overturning Circulation (AMOC) and its enhanced influence on 
North Atlantic SST. Results obtained from preindustrial control integrations of models participating in the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) support the findings obtained from the KCM: 
models with large North Atlantic biases tend to have a weak AMOC influence on SAT and exhibit a 
smaller SAT predictability over the North Atlantic sector.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Multiyear predictability of surface air temperature (SAT) in the 
North Atlantic sector has been studied in many climate models. 
The models suggest that the multiyear predictability is largely re-
lated to multidecadal variability of sea surface temperature (SST) 
(DelSole et al., 2013; Jia and DelSole, 2012; Wu et al., 2015), which 
is sometimes referred to as the Atlantic Multidecadal Oscillation 
(AMO) (Kerr, 2000). Here we use the more general term Atlantic 
Multidecadal Variability (AMV). Results from the models partic-
ipating in the Coupled Model Intercomparison Project phase 5 
(CMIP5; Taylor et al., 2012) show that the role of internal vari-
ability cannot be ignored in multidecadal SST variations over the 
North Atlantic (Flato et al., 2013). The underlying mechanism of 
the AMV, however, is still under debate. Some recent studies have 
attributed the AMV to stochastic atmospheric forcing without the 
need to involve active ocean dynamics (Clement et al., 2015, 2016; 
Srivastava and DelSole, 2017), which has been disputed in other 
studies (O’Reilly et al., 2016; Zhang et al., 2016). In fact, in many 
climate models, the AMV, at least in part, is driven by the At-
lantic Meridional Overturning Circulation (AMOC) through changes 
in northward heat transport (Ba et al., 2014). As the main north-
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ward heat-carrying component in the ocean, AMOC thus poten-
tially is a large source of the multiyear SAT predictability over the 
North Atlantic (Collins et al., 2006). The level of multiyear North 
Atlantic sector SAT predictability, however, strongly varies among 
models, and the source of this diversity in multiyear predictability 
remains unclear.

A common problem in global climate models is large biases in 
the North Atlantic Ocean (Flato et al., 2013; Wang et al., 2014). 
These model biases, which are seen, for example, in both sea sur-
face salinity (SSS) and SST, strongly impact the representation of 
decadal to multidecadal variability in the North Atlantic sector 
(Menary et al., 2015; Park et al., 2016). Menary et al. (2015) show 
that models exhibiting large fresh and cold biases tend to simu-
late salinity-controlled AMOC variability, while models with salty 
and warm biases temperature-controlled AMOC variability. By em-
ploying a freshwater flux correction over the North Atlantic, which 
strongly reduces North Atlantic SSS and SST biases in the Kiel Cli-
mate Model (KCM), Park et al. (2016) report a more realistic AMOC 
simulation in comparison to the limited instrumental observations 
and a more robust link between the AMOC and North Atlantic SST 
as well as Northern Hemisphere SAT. The purpose of this study 
is to investigate the impact of these improvements on multiyear 
North Atlantic sector SAT predictability in that freshwater flux-
corrected model version of the KCM. We additionally compare our 
results with results derived from preindustrial control integrations 
of a set of CMIP5 models.
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2. Model and data

The version of the Kiel Climate Model used here consists of the 
ECHAM5 atmosphere general circulation model (Roeckner et al., 
2003) with a spectral horizontal resolution of T42 (2.8◦ × 2.8◦)
and with 19 vertical levels. The atmosphere model is coupled 
through the OASIS coupler to the NEMO ocean–sea ice model 
(Madec, 2008) and integrated on the global tripolar grid at 2◦
horizontal resolution (ORCA2). Enhanced meridional resolution of 
0.5◦ is employed in the equatorial region, and the ocean model 
is run with 31 vertical levels. We note that the standard KCM 
(Park et al., 2009), which was used in e.g. Ba et al. (2013) and 
Ba et al. (2014), employs a coarser horizontal resolution of T31 
(3.75◦ × 3.75◦) in its atmospheric component. A list of refer-
ences of published studies conducted with the standard KCM can 
be obtained from http :/ /www.geomar.de /en /research /fb1 /fb1-me /
research-topics /climate-modelling /kcms/.

We analyze data from two multi-millennial, about 4000 yr long, 
control integrations of the KCM, one with and the other with-
out employing a freshwater flux correction over the North Atlantic 
(Park et al., 2016). These are labeled FWC and CTL, respectively. 
The CO2 concentration is set to preindustrial levels in both inte-
grations. Only the last 3000 years of each simulation is used here 
to account for model spin-up. Relative to the uncorrected control 
run (CTL), the freshwater flux-corrected simulation (FWC) not only 
exhibits much less SSS bias in the North Atlantic, as expected, but 
also strongly reduced North Atlantic cold SST bias which is a com-
mon problem in climate models. In general, FWC in comparison to 
CTL depicts a much better simulation of both the mean state and 
multidecadal variability in the North Atlantic sector. Further details 
are discussed in Park et al. (2016).

Data from preindustrial control integrations of 10 CMIP5 mod-
els (Taylor et al., 2012) are additionally analyzed: ACCESS1-3, 
CanESM2, CCSM4, CSIRO-Mk3-6-0, GFDL-ESM2M, MPI-ESM-LR, 
MPI-ESM-MR, MIROC5, MRI-CGCM3, and NorESM1-M. The data are 
interpolated onto a common 3◦×3◦ grid. We select the last 300 
years from each model and concatenate them to a 3000-yr multi-
model time series for analysis. For individual models, the first half 
of the data is used for training and the second half for verification 
in Average Predictability Time (APT) analysis. The total sample size 
for training and verification is equally 1500 yr in both the CMIP5 
ensemble and KCM integrations. Annual-mean data is used. To re-
duce the effects of climate drift, for each model a second-order 
polynomial is subtracted at each grid point (Boer, 2004). Long-term 
mean SSS and SST biases are calculated as differences between 
the simulated values and climatology from NODC World Ocean 
Atlas 1994 (http :/ /www.esrl .noaa .gov /psd /data /gridded /data .nodc .
woa94 .html). Although an observed climatology includes some in-
fluence of external forcing which is absent in the model data, this 
difference is likely negligible, as the model biases in the North At-
lantic are large compared with the external forcing influences. An 
AMOC index is defined as the maximum of the Atlantic meridional 
overturning streamfunction at 30◦N. The AMV index used here is 
defined as the North Atlantic SST anomalies averaged over the re-
gion 0◦N–70◦N.

3. Methods

We identify the most predictable mode of the surface air tem-
perature (SAT) over the Northern Hemisphere from a dataset by 
applying the Average Predictability Time (APT) method which has 
been proposed by DelSole and Tippett (2009). APT finds linear 
combination of variables which maximizes predictability integrated 
over all lead times. Let xt be the vector specifying amplitude of the 
predictor at the time t . In APT analysis, a linear regression model 
is used for forecast

x̂t+τ = Lτ xt, (1)

where x̂t+τ is the predicted vector at time t + τ , and Lτ is the re-
gression operator at lead time τ . The estimate of the regression 
operator is obtained by the least squares method with solution 
Lτ = Cτ C−1

0 , where Cτ is the time-lagged covariance matrix and 
C 0 is the climatological matrix of the predictor x, given that pre-
dictors and predictands are the same, which is the case in this 
study. We denote the weights of the linear combination of x as 
vector q, and qT x refers to a new predictable mode. We seek the 
vector q that maximizes APT. The predictability of the predictable 
mode at a fixed lead time τ as estimated by the squared multiple 
correlation coefficient R2

τ is given by

R2
τ = qT Lτ C 0 LT

t q

qT C 0q
. (2)

R2
τ refers to the fraction of the total variance of the predictable 

mode explained by the linear regression prediction. APT is defined 
as twice of the integration of R2

τ over all lead times:

APT = 2
∞∑

τ=1

qT Lτ C 0 LT
t q

qT C 0q
= 2

∞∑

τ=1

qT C τ C−1
0 C T

τ q

qT C 0q
, (3)

where Lτ = Cτ C−1
0 . Hence, APT is independent of the lead time 

and characterizes an integral property of the climate system. Fol-
lowing DelSole and Tippett (2009), the problem of finding the 
weight vector to optimize APT in equation (3) leads to a gener-
alized eigenvalue problem:

2
∞∑

τ=1

(
Cτ C−1

0 C T
τ

)
q = λC 0q. (4)

The eigenvectors of (4) provide the weights to decompose the 
multivariate time series x into a set of orthography component, 
and the eigenvalues λ give the associated average predictable time 
(APT) for each eigenvector. By ordering the eigenvectors decreas-
ingly according to predictability time, the first eigenvector provides 
the most predictable mode with maximum APT (APT1), and the 
second eigenvector corresponds to the second most predictable 
mode (APT2) uncorrelated with the first one, and so on. In sim-
ple words, APT method is similar to Empirical Orthogonal Func-
tion (EOF) analysis, except that the APT method decomposes pre-
dictability instead of variance.

The APT timescale is the integration of R2
τ . In general, compo-

nents that are persistent and oscillate in a narrow range of fre-
quencies have large APT. APT has a close connection with Canoni-
cal Correlation Analysis (CCA). CCA is a procedure that determines 
the components in two datasets (xt and xt+τ in the present case) 
that are maximally correlated. The main difference is CCA max-
imizes the multiple correlation at one lead time τ , while APT 
maximizes the sum of the squared multiple correlations at all lead 
times. APT also has some similarities to the Linear Inverse Model 
(LIM) method. LIM detects the predictable modes with optimal ini-
tial condition growth at a fixed lead time. Thus, an eigenvalue 
problem representing an optimal procedure is investigated in LIM 
too (Vimont et al., 2014; Capotondi and Sardeshmukh, 2015).

Since the number of grid points exceeds the sample size, as in 
LIM, the predictors and predictands are projected on the leading 
EOFs to reduce spatial dimension (DelSole and Tippett, 2009). In 
this study, we choose 40 principal components (PCs) of SAT over 
the Northern Hemisphere and the maximum lead time as 20 yr. 
Also, we test the sensitivity of the APT results by varying the num-
ber of the PCs and maximum lead time, but the major results are 
not sensitive to the choice of parameters. To avoid overestimated 
predictability, the data are split into two periods of equal length, 
one for training and the other for verification. The linear regression 
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