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Common methods for in-situ determination of porosity of river bed material are time- and effort-consuming.
Although mathematical predictors can be used for estimation, they do not adequately represent porosities. The
objective of this study was to assess a new approach for the determination of porosity of frozen sediment
samples. The method is based on volume determination by applying Structure-from-Motion with Multi View
Stereo (SfM-MVS) to estimate a 3D volumetric model based on overlapping imagery. The method was applied
on artificial sediment mixtures as well as field samples. In addition, the commonly used water replacement
method was applied to determine porosities in comparison with the SfM-MVS method. We examined a range
of porosities from 0.16 to 0.46 that are representative of the wide range of porosities found in rivers. SfM-MVS
performed well in determining volumes of the sediment samples. A very good correlation (r = 0.998, p b

0.0001) was observed between the SfM-MVS and the water replacement method. Results further show that
the water replacement method underestimated total sample volumes. A comparison with several mathematical
predictors showed that for non-uniform samples the calculated porosity based on the standard deviation per-
formed better than porosities based on themedian grain size. None of the predictors were effective at estimating
the porosity of the field samples.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The porosity of sediment samples of river bed material is defined as
the relation of pore volume to total volume and is a geomorphologic
parameter to describe sediment characteristics. It is influenced by the
size, distribution and shape of individual sediment grains (Fraser,
1935; Graton and Fraser, 1935). Among other parameters, it can be
used as a descriptive variable for reproduction habitats of gravel-
spawning fish as well as for habitats of juvenile and benthic fish or
macroinvertebrates (Bunte and Abt, 2001; Noack, 2012). Porosity can
be reduced from intrusion and deposition of fine sediments in the
pore space. This process, known as colmation (e.g., Schälchli, 1992;
Brunke, 1999), clogs the pores, which limits the physical habitat space
for juvenile fish and macroinvertebrates (Richards and Bacon, 1994;
Buendia et al., 2013; Descloux et al., 2013) and reduces the transport
of dissolved oxygen into the hyporheic interstitial (Greig et al., 2007;
Heywood and Walling, 2007; Sear et al., 2008). This can, in turn,
significantly increase egg mortality of salmonid embryos (Sear et al.,
2016). Clogged pore space also reduces the survival of alevins during
emergence (Gustafson-Greenwood and Moring, 1991; Kemp et al.,

2011) by preventing their upward migration to the stream bed
(Kondolf, 2000). A negative correlation between porosity and macroin-
vertebrate density as well as taxon richness within the bed sediment is
also reported in literature (Maridet et al., 1992; Gayraud and Philippe,
2003; Bo et al., 2007). Noack et al. (2017) modelled the availability of
interstitial habitat suitability of brown trout and found a decrease of
interstitial habitat suitability with decreasing hydraulic conductivity
caused by the infiltration of fine sediments.

During recent decades, porosity has been the focus of various studies
(Carling and Reader, 1982; Yu and Standish, 1991;Wu andWang, 2006;
Wooster et al., 2008; Frings et al., 2011; Zou et al., 2011; Capece et al.,
2014; Liang et al., 2015). The porosity n is calculated by the volumetric
proportion of pore space and sediment volume:

n ¼ VP

Vtot
¼ 1−

Vtot−VSe

Vtot
ð1Þ

with either a known pore volume VP and total sample volume Vtot, or a
known Vtot and the particle volume VSe. In principal, three options are
available to assess the porosity of river bed sediments: (i) in-situ field
measurements, (ii) laboratory measurements or (iii) estimation based
on mathematical predictors. A common but time-consuming method
to identify porosity on site or in the laboratory is the water replacement
method (WRM, e.g., Frings et al., 2011; Bunte and Abt, 2001). One
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possible way to apply WRM can be found in the guidelines from the
American Society of Testing and Materials (2004) in which the sedi-
ment is first removed from the location of interest, then the excavation
is covered with a liner and filled with water in order to measure Vtot.

To analyze the porosity of sediment samples in laboratories, several
methods are available. Exemplarymethods include the gas pycnometer,
following Boyle's Law of volume-pressure relationships, or the water
desorption method (Klute, 1986). For the water desorption method, a
saturated sample is drained stepwise and the water volume that is
removed from the soil pores is measured, which enables porosity to
be determined. Other methods are based on nuclear techniques, such
as gamma-ray attenuation or computed tomography following the
Beer-Lambert Law, where a gamma- or X-ray interacts with a material
and the absorbed intensity of the gamma- or X-ray is transmitted
(Pires and Pereira, 2014).

Since in-situmeasurements of porosity in thefield and in the labora-
tory are time- and labor-intensive, several theoretical or mathematical
equations have been developed to estimate porosity. Most of the
mathematical predictors (Table 1) apply empirical relationships be-
tween porosity and the grain size distribution, where other controlling
factors like grain shape, for example, are neglected (Frings et al.,
2011). For these predictors, two approaches are available. The first
uses the D50 as the characteristic parameter, while the second approach
is based predominantly on the geometric standard deviation. Komura
(1961) first established a relationship between the D50 and porosity
using unconsolidated natural sediments from different Japanese rivers.
The equation of Carling and Reader (1982) also employs a correlation
(r2 = 0.9; p b 0.001) between the D50 and the porosity of poorly sorted,
unconsolidated sediments. Wu and Wang (2006) used data based on
studies found in the literature and data from different reservoirs in
China (see Chinese Association of Hydraulic Engineering CAHE,
Committee on Sedimentation, 1992). Bymodifying and adapting the ap-
proach of Komura (1963), a correlation with the D50 can be confirmed.
The second approach uses the geometric standard deviation σG, which
considers thewhole grain size distribution instead of only one statistical
parameter. The geometric standard deviation σG of the φ-scale is
calculated via the method of moments (Frings et al., 2011):

σG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

f i φi−∑ f iφið Þ2
q

ð2Þ

where fi is the fraction of sediments in size class i and φi is the
characteristic sediment diameter for size class i, expressed on the
φ-scale. Wooster et al. (2008) established a relation between the
geometric standard deviation and the porosity using a power
function (r2 = 0.85, p b 0.001). Frings et al. (2011) measured the
porosity of sediment mixtures based on samples obtained from the
field and the laboratory and established a multivariate regression
function between the geometric standard deviation, the percentage
of fines smaller than 0.5 mm (f b0.5) and the porosity (r2 = 0.71). Be-
side mathematical predictors based on the grain size distribution, Yu
and Standish (1991) established a linear-mixture packing model to
estimate the porosity. Liang et al. (2015) developed a stochastic
digital packing algorithm that considers controlling factors such as
grain shape. Table 1 summarizes the mathematical predictors

mentioned above, which are based on a relationship between poros-
ity and the grain size distribution. Although mathematical predictors
are easy to apply, it is widely recognized that they do not reproduce
porosity very accurately (Frings et al. 2011), making direct measure-
ments of porosity desirable.

The objective of this study is to develop a new approach to measure
the porosity of sediment samples using the photogrammetric technique
Structure-from-Motion with Multi View Stereo (SfM-MVS). SfM-MVS
requires multiple overlapping photographs of an object from different
perspectives (multiple viewpoints) to resolve a three-dimensional
model of the object (e.g.,Westoby et al., 2012). In this study, it is applied
to determine volumes of frozen sediment samples for further assess-
ment of porosity. Using the SfM-MVS method, only the acquisition of
sufficient digital images is required in the field. To investigate the
capability of SfM for porosity measurements, we (i) determined the
accuracy of volume measurements for simple geometric bodies with
known geometry, (ii) identified the overall accuracy of porosity
measurements for various homogeneous sediments, artificially mixed
sediments, and natural sediment samples, and (iii) compared the
measured porosity values with porosity values calculated from mathe-
matical predictors in literature and evaluated the general performance
of mathematical predictors. The volumes and porosities obtained in
(i) and (ii) were also compared to the most commonly applied water
replacement method (WRM).

2. Materials and methods

2.1. Principles of SfM-MVS photogrammetry

SfM-MVS photogrammetry can be performed with consumer-grade
cameras, requires no expert supervision (Micheletti et al., 2015), and
is therefore extensively employed in various fields of application
(Westoby et al., 2012; Eltner et al., 2016; Smith et al., 2015). Eltner
et al. (2016) provides an overview of the merits and limits of SfM-MVS,
including different fields of application such as the generation of digital
elevation models (DEM) with unmanned airborne vehicles (UAV).

SfM-MVS differs from traditional stereoscopic photogrammetry in
that it automatically computes camera position and orientation
(Snavely et al., 2008;Westoby et al., 2012). Overall, five steps are neces-
sary to produce a high quality 3Dmodel of an object or surface during the
processing of digital images. First, high-resolution images must be ac-
quired with sufficient overlap to generate a high-quality model.
Second, the software detects features on overlapping images, which are
invariant to scaling and rotation effects (e.g., Westoby et al., 2012).
With a scale invariant feature transformation (SIFT, Lowe, 1999), the spa-
tial relationship between the image location in a coordinate system is
established (Micheletti et al., 2015). These ‘key points’ are detected for
all images and are used to determine the exact camera position. A sparse
point cloud (Fig. 1a) consisting of tie points (points that tie one image to
another) is created out of the key points by a sparse bundle adjustment
(Snavely et al., 2008), resulting in their 3D location (Micheletti et al.,
2015). In the third step, the sparse cloud is intensified by applying
Multi View Stereo techniques (MVS, e.g., Furukawa and Ponce, 2010;
Westoby et al., 2012; Micheletti et al., 2015), resulting in the dense

Table 1
Mathematical predictors to estimate porosity based on a relationship between porosity and grain size.

Reference Equation Range of application

Komura (1961) n = 0.0864D50
−0.21 + 0.245 (D50 in cm) 0.01 b D50 b 1000 mm

Carling and Reader (1982) n = 0.4665D50
−0.21 − 0.0333 D = 2–1000 mm

5 b D50 b 200 mm
Wu and Wang (2006) n ¼ 0:13þ 0:21

ðD50þ0:002Þ0:21
10−3 b D50 b 100 mm

Wooster et al. (2008) n = 0.621σG
−0.659 D = 0.075–22 mm

0.26 b σG b 1.80
Frings et al. (2011) n = 0.353− 0.068σG + 0.219fb0.5 D = 0.02–125 mm
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