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In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small
scale, short-term coastal morphodynamics, given its capability for treating a wide database of known informa-
tion, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance be-
tween the computational load and reliability of estimations of the three models. In fact, even though it is easy
to imagine that themore complex themodel, the more the prediction improves, sometimes a “slight”worsening
of estimations can be accepted in exchange for the time saved in data organization and computational load. The
models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better
estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand,
even though the data organization was identical for the two models, the multilinear one required a simpler
simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model
was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation
time of the estimation. The overlapping rate between the confidence band of the mean of the known coast posi-
tion and the prediction band of the estimated position can be a good index of the weakness in producing reliable
estimations when the extrapolation time increases too much. The proposed models and tests have been applied
to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.
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1. Introduction

The coastal management aims to define future morphodynamics
in order to plan and realize defense works safeguarding such areas
(Masciopinto, 2006). Nevertheless, forecasting morphodynamics can
be affected by errors due to morphological instabilities over long
time periods and provide incorrect representations. Sandy beaches
are very dynamic systems and the relationship between hydro- and
morphodynamics is a non-linear function, strongly dependent on time
and spatial scales (Ranasinghe, 2016). In contrast, rocky coast evolution
occurs over millennia even though some morphological evidences can
be observed, (Matsumoto et al., 2016) as local rock falls and blocks
on the beach or into the sea. Consequently, the assessment of shoreline
evolution at different scales requires advanced methods and tools.
Studies of coastal evolution have so far been based on the paleogeo-
graphic reconstruction (Rao et al., 2015) by means of stratigraphic sur-
veys, radiometric and luminescence dating (Fruergaard et al., 2015),
high-resolution topographic data (Jara-Muñoz et al., 2016), observations,

and comparisons of historical maps. At the basin scale, the coastline is
explained as the result of events over the Holocene (Brill et al., 2015),
generally linked to river course changes, prevailing winds, marine cur-
rents (Cooper et al., 2013), tides (Davis and Hayes, 1984) and, more
recently, to anthropogenic environmental changes (Hapke et al., 2013;
Le Cozannet et al., 2014).

According to the Intergovernmental Panel on Climate Change
(IPCC), future climate change scenarios referred to the end of the 21st
century will impact mean sea level, wave conditions, storm surges,
river flow and, ultimately, the coastal zone evolution (Gornitz, 1991;
Solomon et al., 2007; Ford, 2013). Given the stochastic nature of the
considered phenomena, some authors propose probabilistic models to
handle the uncertainty associated with coastal dynamics forecasting
(Cowell and Zeng, 2003) at different space and time scales. In this
context, since the ‘90s the scientific literature reports approaches
based on time-series and trend analysis (Crowell et al., 1997; Galgano
and Douglas, 2000), fuzzy-logic numerical models (Altunkaynak,
2014), Bayesian networks (Gutiérrez et al., 2011) and Neural Network
Approximation (NNA) (Gopinath and Dwarakish, 2015). Bheeroo et al.
(2016) estimated the risk of marine erosion using the Digital Shoreline
Analysis System (DSAS), a free software application developed and
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implemented at the United States Geological Survey (USGS) (Thieler
and Danforth, 1994). Scientific literature frequently proposes data-
driven modelling as a reliable coastal management decision-support
tool (Hsu et al., 1994).

Independently from the approach, specific attention must be paid to
the timescale of the considered phenomenon. Actually, shoreline changes
are triggered by natural processes characterized by different timescales,
which range from episodic (hours-days) to medium-term or inter-
annual (year-decade), up to long-term (decades-century) (Thom and
Hall, 1991; Cowell et al., 1992; Ranasinghe, 2016). Consequently, the
choice of the timescale is strictly related to the objectives of the study
but strongly constrained by the available data.

In this paper, an advanced data modelling strategy, based on
the evolutionary polynomial regression (EPR) approach (Giustolisi
and Savic, 2006), has been applied to study small spatial scale and
medium-term coastalmorphodynamics. Simple linear and amultilinear
regression models have also been applied, and a balance between com-
putational load and the reliability of the outcome of the three models
has been explored. Even expecting that the most advanced modelling
strategy provides most reliable results, such a comparison aims to
evaluate if a “slight” worsening of the estimations can be accepted in
exchange for the time saved in data organization and computational
load. The choice of the EPR approach has been based on our intention
of testing a data-driven technique, based on evolutionary computation,
to simulate the coastal dynamics. This is a hybrid approach combining
numerical regression and evolutionary search ofmode expressions, pro-
viding a number of reliable regression models, all capable of making
good forecasts of the evolution of a given shoreline sector. Although it
is not physically based, it allows the introduction of some prior insight
on the phenomenon before (i.e. selection of candidate inputs) and
after (i.e. selection among expressions)model exploration. Even though
scientific and technical literature reports the application of various re-
gression models to the considered problem of coastal change, it does
not include the use of EPR, which instead has been applied in various
environmental studies, such as groundwater quantitative and qualita-
tive assessment, and hydrological time-series analysis (Giustolisi et al.,
2008; Markus et al., 2010).

The proposed model has been applied to an about 1.2 km-long
coastal sector nearby Torre Colimena in the Apulia region, south Italy,
where several geomorphological and hydrogeological studies have
been carried out during the last 50 years (Dai Pra and Hearty, 1989;
Bruno et al., 2016).

2. Materials and methods

In this paper, the SLR andMLR have been executed bymeans of sim-
ple MS-Excel formulas, while the EPR modelling strategy have been ap-
plied by means of the MS-Excel add-in “EPR MOGA-XL” (Giustolisi and
Savic, 2006; Giustolisi and Savic, 2009). In the following section, after a
brief introduction to linear regression, amore detailed description of the
EPR main theoretical and practical issues are provided.

2.1. Multivariate linear regression

The MLR is a well-known and, perhaps, the simplest method to
simulate coastal morphodynamics based on the knowledge of the past
shoreline evolution. This method is capable of quantifying any rela-
tionship between a dependent variable and one or more independent
variables and is expressed by the linear model:

y ¼
Xm
j¼1

ajx j þ a0 ð1Þ

where y is the dependent variable; xj are them independent variables;
and aj and a0 are the unknown regression coefficients and the bias,

respectively. The coefficient of determination R2 and the Lin coefficient
are used to measure the capability of the regression model to describe
y. SLR refers to Eq. (1) where j=1.

2.2. Evolutionary polynomial regression

The EPR is a data-driven technique based on the evolutionary
computation (Giustolisi and Savic, 2006), which deals with pseudo-
polynomial structures representing a true physical system. A typical
compact formulation of the EPR expression is:

y ¼
Xm
j¼1

F X; f Xð Þ; aj
� �þ a0 ð2Þ

where y is the dependent variable; aj is a coefficient for the jth term; F is
a function produced by the process; X is the matrix of dependent
variables; f is a function defined by the user;m is themaximumnumber
of terms in the expression; and a0 is an optional bias.

EPR MOGA-XL is implemented through two main stages: an evolu-
tionary procedure, and a linear regression step. The former is based on
amulti-objective genetic algorithm (GA) for searchingmodel structures
(Goldberg et al., 1989; Giustolisi and Savic, 2009), and the latter is
based on a least squares (LS) technique (Giustolisi et al., 2007; Laucelli
and Giustolisi, 2011) for computing model parameters. This multi-
objective strategy allows searching for models achieving the best
trade-off between fit to observed data, achieved by minimizing the
Sum of Squared Error (SSE), andmodel expression complexity, as num-
ber of pseudo-polynomial terms and/or number of input variables
selected in themodel. Such a strategy enabled us to overcome the intro-
duction of the penalization of complexity (PCS) fitness function applied
in the earlier EPR strategy (Giustolisi and Savic, 2006). This approach
allows one to evaluate what is the real contribution of adding a new
term or a further variable to the prediction accuracy as the model com-
plexity increases. In other words, considering the accuracy as a benefit
and the structural complexity as a cost, EPR MOGA-XL allows one to
assess which cost produces higher accuracy.

EPRMOGA-XL is implemented in a software application running in a
mixed environment (Rezania et al., 2008), which takes advantage of
the computational capability ofMATLAB and the graphical and datama-
nipulation facilities of MS-Excel. In order to run EPR MOGA-XL, some
parameters must be assigned to drive both the evolutionary search
and the linear regression steps: the general model structure (i.e. F and
f(X) in Eq. (2)), the maximum number of the pseudo-polynomial
terms (m), the range of exponents for variables (X) to be assigned in
Eq. (2), the modelling type (e.g. for time-series or not), the coefficients
estimation method (i.e. least squares), and the optimization strategy
(i.e. minimizing the number of pseudo polynomial terms, the number
of selected variables or both against theminimization of the SSE). A rea-
sonable setting of such parameters would positively affect the software
application runtime.

2.3. Simulations

Generally speaking, the three proposed methods share the same
preliminary steps, which fundamentally consist in the data organiza-
tion. Fig. 1 shows the main preliminary steps. Preliminary step 1) con-
cerns the discretization of the considered coastline; the more transects
there are, the more the discretization fits the actual coastline but the
more the computational time increases. Note that transects all have
the same width and are all oriented N-S in order to measure their
changes of position just as upward/downward movements along the
vertical axis. Setting the number and the dimension of transects is an
important task; the more the number increases, the more the relative
dimension decreases; nevertheless, this increases the computational
load. Given a local spatial scale (hundred meters to few kilometers),
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