
Accepted Manuscript

Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia

Gaojie Li, Chihua Wu, Juan Pedro Rodríguez-López, Haisheng Yi, Guoqing Xia, Michael Wagreich

PII: S0037-0738(17)30290-7

DOI: https://doi.org/10.1016/j.sedgeo.2017.12.014

Reference: SEDGEO 5286

To appear in:

Received date: 20 September 2017 Revised date: 12 December 2017 Accepted date: 13 December 2017

Please cite this article as: Gaojie Li, Chihua Wu, Juan Pedro Rodríguez-López, Haisheng Yi, Guoqing Xia, Michael Wagreich, Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Sedgeo(2017), https://doi.org/10.1016/j.sedgeo.2017.12.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin,

China: Implications for palaeoatmosphere dynamics and paleoclimatic change in

East Asia

Gaojie Li^a, Chihua Wu^{b,c,*}, Juan Pedro Rodríguez-López^d, Haisheng Yi^e, Guoqing Xia^e, Michael

Wagreichf

^a College of Earth Sciences, Chengdu University of Technology, Chengdu 610059 China

^b School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006 China

^c Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510006 China

^d Universidad Nebrija. Calle Pirineos, 55. 28040. Madrid. Spain

^e Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059 China

 f Department of Geodynamics and Sedimentology, University of Vienna, A-1090 Vienna , Austria

Author Correspondence: Dr. Chihua Wu. Email: wuchi-hua@foxmail.com

Abstract

The mid-Cretaceous constitutes a period of worldwide atmospheric and oceanic change associated with slower thermohaline circulation and ocean anoxic events, possible polar glaciations and by a changing climate pattern becoming controlled by a zonal planetary wind system and an equatorial humid belt. During the mid-Cretaceous, the subtropical high-pressure arid climate belt of the planetary wind system controlled the palaeolatitude distribution of humid belts in Asia as well as the spatial distribution of rain belts over the massive continental blocks at mid-low latitudes in the southern and northern hemispheres. Additionally, the orographic effect of the Andean-type active continental margin in East Asia hindered the transportation of ocean moisture to inland regions. With rising temperatures and palaeoatmospheric conditions dominated by high pressure systems,

Download English Version:

https://daneshyari.com/en/article/8908549

Download Persian Version:

https://daneshyari.com/article/8908549

<u>Daneshyari.com</u>