Accepted Manuscript

The role of iron and reactive oxygen species in the production of CO₂ in arctic soil waters

Adrianna Trusiak, Lija A. Treibergs, George W. Kling, Rose M. Cory

PII: S0016-7037(17)30798-6

DOI: https://doi.org/10.1016/j.gca.2017.12.022

Reference: GCA 10595

To appear in: Geochimica et Cosmochimica Acta

Received Date: 13 June 2017 Accepted Date: 26 December 2017

Please cite this article as: Trusiak, A., Treibergs, L.A., Kling, G.W., Cory, R.M., The role of iron and reactive oxygen species in the production of CO₂ in arctic soil waters, *Geochimica et Cosmochimica Acta* (2017), doi: https://doi.org/10.1016/j.gca.2017.12.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The role of iron and reactive oxygen species in the production of CO₂ in arctic soil waters

Adrianna Trusiak¹, Lija A. Treibergs¹, George W. Kling², Rose M. Cory^{1*}

Abstract

Hydroxyl radical (•OH) is a highly reactive oxidant of dissolved organic carbon (DOC) in the environment. •OH production in the dark was observed through iron and DOC mediated Fenton reactions in natural environments. Specifically, when dissolved oxygen (O₂) was added to low oxygen and anoxic soil waters in arctic Alaska, •OH was produced in proportion to the concentrations of reduced iron (Fe(II)) and DOC. Here we demonstrate that Fe(II) was the main electron donor to O₂ to produce •OH. In addition to quantifying •OH production, hydrogen peroxide (H₂O₂) was detected in soil waters as a likely intermediate in •OH production from oxidation of Fe(II). For the first time in natural systems we detected carbon dioxide (CO₂) production from •OH oxidation of DOC. More than half of the arctic soil waters tested showed production of CO₂ under conditions conducive for production of •OH. Findings from this study strongly suggest that DOC is the main sink for •OH, and that •OH can oxidize DOC to yield CO₂. Thus, this iron-mediated, dark chemical oxidation of DOC may be an important component of the arctic carbon cycle.

¹Department of Earth and Environmental Sciences, 1100 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA

²Department of Ecology and Evolutionary Biology, 1100 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA

^{*} Corresponding author: phone: +1 734-615-3199; fax: +1 734-763-4690; email: rmcory@umich.edu

Download English Version:

https://daneshyari.com/en/article/8910864

Download Persian Version:

https://daneshyari.com/article/8910864

<u>Daneshyari.com</u>