
Accepted Manuscript

Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics

Johanne Schmith, Ármann Höskuldsson, Paul Martin Holm, Guðrún Larsen

PII:	80377-0273(17)30265-2
DOI:	https://doi.org/10.1016/j.jvolgeores.2018.01.024
Reference:	VOLGEO 6296
To appear in:	Journal of Volcanology and Geothermal Research
Received date:	3 May 2017
Revised date:	24 January 2018
Accepted date:	29 January 2018

Please cite this article as: Johanne Schmith, Ármann Höskuldsson, Paul Martin Holm, Guðrún Larsen , Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Volgeo(2017), https://doi.org/10.1016/j.jvolgeores.2018.01.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics

Johanne Schmith^{1,3}, Ármann Höskuldsson^{1,2}, Paul Martin Holm³, and Guðrún Larsen²

¹Nordic Volcanological Center, Earth Science institute, University of Iceland, johannes@ign.ku.dk, +4527121368 ²Earth Science institute, University of Iceland ³Institute of Geoscience and Natural Resource Management, University of Copenhagen

Abstract

Katla volcano in Iceland produces hazardous large explosive basaltic eruptions on a regular basis, but very little quantitative data for future hazard assessments exist. Here details on fragmentation mechanism and eruption dynamics are presented for the first time. We show that magma/water interaction is important in the ash generation process, but to a variable extend.

By investigating the large explosive basaltic eruptions from 1755 and 1625, we document that eruptions of similar size and magma geochemistry can have very different fragmentation dynamics. Our models show that fragmentation in the 1755 eruption was a combination of magmatic degassing and magma/waterinteraction with the most magma/water-interaction at the beginning of the eruption. The fragmentation of the 1625 eruption was initially also a combination of both magmatic and phreatomagmatic processes, but magma/water-interaction diminished progressively during the next stages of the eruption. However, intense magma/water interaction was reintroduced during the final stages of the eruption dominating the fine fragmentation at the end. This detailed study of fragmentation changes documents that subglacial eruptions have highly variable interaction with the melt water showing that the amount and access to melt water changes significantly during eruptions. Our study is based on a detailed deposit stratigraphy, granulometric modeling, componentry and the new quantitative regularity index model of fragmentation mechanism. While it is often difficult to reconstruct the progression of eruptions that have no quantitative observational record, this study shows that integrating field observations and granulometry with the new regularity index can form a coherent model of eruption evolution.

Download English Version:

https://daneshyari.com/en/article/8911365

Download Persian Version:

https://daneshyari.com/article/8911365

Daneshyari.com