Accepted Manuscript

The Messinian diatomite deposition in the Mediterranean region and its relationships to the global silica cycle

Luca Pellegrino, Francesco Dela Pierre, Marcello Natalicchio,

EARTH-SCIENCE

REVIEWS

Giorgio Carnevale

PII: S0012-8252(17)30499-3

DOI: https://doi.org/10.1016/j.earscirev.2018.01.018

EARTH 2576 Reference:

To appear in: Earth-Science Reviews

Received date: 27 September 2017 Revised date: 23 January 2018 Accepted date: 23 January 2018

Please cite this article as: Luca Pellegrino, Francesco Dela Pierre, Marcello Natalicchio, Giorgio Carnevale, The Messinian diatomite deposition in the Mediterranean region and its relationships to the global silica cycle. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Earth(2017), https://doi.org/10.1016/j.earscirev.2018.01.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The Messinian diatomite deposition in the Mediterranean region and its relationships to the global silica cycle

Luca Pellegrino*, Francesco Dela Pierre, Marcello Natalicchio, Giorgio Carnevale

Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35 10125 Torino, Italia

ABSTRACT

Diatomites constitute a widely represented lithology in the Messinian sections of the circummediterranean Neogene marginal basins. Although traditionally interpreted as genuine evidence of the gradually restricted conditions that characterized the Mediterranean just before the Messinian salinity crisis, their coeval occurrence with a global intensification of the opaline production in the world oceans (late Miocene-early Pliocene biogenic bloom) suggests that an integrative analysis of the origins of these sediments is necessary. A comprehensive analysis of the geological and paleontological records suggests that the synergistic intervention of abiotic (tectonic and climate reconfigurations) and biotic (expansion of grass-dominated, opal-rich biomes) controlling factors may have promoted a remarkable enhancement of silica flux from continents to oceans, which in turn can explain the opaline burst that occurred during the late Miocene, at both the global and Mediterranean scale. The finely laminated pattern and the rich fossil content of diatomaceous deposits, that are usually considered to be byproducts of anoxic conditions, are briefly discussed. Some studies seem to indicate that, instead of anoxia, the aggregation and sedimentation of diatom tests may play a critical role in these processes. The lower Messinian diatomites of the Mediterranean region are generally interbedded with organic-rich sediments (sapropels) clearly attesting prolonged, precessionally-controlled periods of basin stratification and bottom water anoxia or hypoxia. A causal relationship between sapropel and diatomite deposition in the

1

^{*} Corresponding author: lu.pellegrino@unito.it

Download English Version:

https://daneshyari.com/en/article/8913004

Download Persian Version:

https://daneshyari.com/article/8913004

<u>Daneshyari.com</u>