Accepted Manuscript

Late Neogene foraminifera from the northern Namibian continental shelf and the transition to the Benguela Upwelling System

Eugene W. Bergh, John S. Compton, Peter Frenzel

PII: S1464-343X(18)30026-8

DOI: 10.1016/j.jafrearsci.2018.01.018

Reference: AES 3132

To appear in: Journal of African Earth Sciences

Received Date: 1 October 2016

Revised Date: 28 January 2018

Accepted Date: 30 January 2018

Please cite this article as: Bergh, E.W., Compton, J.S., Frenzel, P., Late Neogene foraminifera from the northern Namibian continental shelf and the transition to the Benguela Upwelling System, *Journal of African Earth Sciences* (2018), doi: 10.1016/j.jafrearsci.2018.01.018.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Late Neogene foraminifera from the northern Namibian continental shelf and
2	the transition to the Benguela Upwelling System
3	
4 5	Eugene W. Bergh ^{*,1,2} , John S. Compton ² and Peter Frenzel ³
6 7	¹ Natural History Department, Iziko South African Museum, P.O. Box 61, Cape Town
8	8000, South Africa; ² Marine Research Institute and Department of Geological
9	Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South
10	Africa; ³ Institut für Geowissenschaften, Friedrich-Schiller Universität Jena, D-07749
11	Jena, Germany
12	
13	Abstract
14	Middle Miocene to Plio-Pleistocene foraminifera provide insights into the
15	palaeoenvironment on the northern Namibian continental shelf located at the far
16	northern end of the present-day Benguela Upwelling System (BUS). Biostratigraphy
17	and Strontium Isotope Stratigraphy (SIS) of the recovered basal olive-green mud unit
18	indicate an age of 16 to 14 Ma. A sharp, erosional contact separates the basal mud
19	from the overlying Plio-Pleistocene gravelly pelletal phosphorite sands. Grain size
20	data, P/B ratios and benthic diversity indices indicate a change between the middle
21	Miocene and overlying Plio-Pleistocene palaeoenvironments linked to the timing and
22	conditions associated with the initiation of the BUS. The different lithological units
23	and microfossil assemblages in the olive-green mud unit and the overlying pelletal
24	phosphorite units support the late Miocene initiation of the BUS and the northwards
25	migration of the Angola-Benguela Front. Planktic foraminifera indicate a shift from
26	warmer surface water conditions to cooler conditions during the initiation of the BUS.
27	Benthic palaeobathymetric ranges and P/B ratios are consistent with outer shelf water
28	depths suggesting a deeper palaeoenvironment during the Mid-Miocene Climatic
29	Optimum (MMCO) than today. Benthic foraminifera in the middle Miocene are
30	dominated by large (>1mm) taxa and adapted to oligotrophic environments before the
31	initiation of the BUS. The benthic assemblage composition indicates that bottom
32	water conditions changed to eutrophic conditions during the Plio-Pleistocene under
33	intensified upwelling conditions. *Email address: ebergh@iziko.org.za

Download English Version:

https://daneshyari.com/en/article/8913518

Download Persian Version:

https://daneshyari.com/article/8913518

Daneshyari.com