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Inversion of receiver functions is commonly used to recover the S-wave velocity structure beneath seismic
stations. Traditional approaches are based on deconvolved waveforms, where the horizontal component of P-
wave seismograms is deconvolved by the vertical component. Deconvolution of noisy seismograms is a nu-
merically unstable process that needs to be stabilized by regularization parameters. This biases noise statistics,
making it difficult to estimate uncertainties in observed receiver functions for Bayesian inference. This study
proposes a method to directly invert observed radial waveforms and to better account for data noise in a
Bayesian formulation. We illustrate its feasibility with two synthetic tests having different types of noises added
to seismograms. Then, a real site application is performed to obtain the 1-D S-wave velocity structure beneath a
seismic station located in the Tengchong volcanic area, Southwestern China. Surface wave dispersion mea-
surements spanning periods from 8 to 65 s are jointly inverted with P waveforms. The results show a complex S-
wave velocity structure, as two low velocity zones are observed in the crust and uppermost mantle, suggesting
the existence of magma chambers, or zones of partial melt. The upper magma chambers may be the heart source

that cause the thermal activity on the surface.

1. Introduction

Receiver functions (RFs) contain information on seismic structure
beneath receivers. They are computed by deconvoluting the vertical
components of body wave seismograms from the horizontal component
(Vinnik et al., 1977; Langston, 1979; Ammon, 1991; Bostock, 1998).
Observed receiver functions can then be inverted to constrain the S-
wave velocity (Vs) structure beneath the station (Julia et al., 2000; Li
and Mashele, 2009; Hammond et al., 2011; Hammond, 2014; Reeves
et al.,, 2015). Various approaches have been implemented, including
linearized inversions (Julia et al., 2000; Herrmann and Ammon, 2002;
Sosa et al., 2014; Chen et al., 2015, 2016; Li et al., 2016) and non-linear
inversions (Sambridge, 1999a; Lawrence and Shearer, 2006; Shen et al.,
2016a,b; Kim et al., 2016).

Linearized inversion techniques are based on partial derivatives and
the solution model get easily trapped by local minima of the misfit
function. Moreover, the final results of linearized inversion strongly
depend on the initial model (Julia et al., 2000; Sosa et al., 2014; Wu
et al., 2016). Non-linear global optimization techniques, such as genetic

algorithm (Shibutani et al., 1996) or simulated annealing (Vinnik et al.,
2004), have the ability to efficiently search for a global optimal solution
in a highly-dimensional model space. However, these Monte Carlo
methods only provide a single best fitting model and fail at representing
uncertainty estimates. To overcome this problem, ensemble inference
techniques based on a Bayesian formulation of the inverse problem can
be used (Mosegaard and Tarantola, 1995; Gallagher et al., 2009; Ball
et al., 2014). These ensemble inference techniques provide an ensemble
of models sampled from the posterior probability distribution (PPD)
using important sampling algorithms, for example the Metropolis-
Hasting (M-H) algorithm (Hastings, 1970). The ensemble of models in
the solution is used to quantify the credibility of model parameters,
providing not only parameters’ estimation but also posterior variance
and correlation estimates. In recent years, ensemble based Bayesian
Monte Carlo techniques have been expanded to the transdimensional
case, where the dimension of model space (e.g. number of layers) is
unknown and variable (Green, 1995, 2003). After the earliest applica-
tion of transdimensional Bayesian inversion (TBI) by Malinverno
(2002) to solve the inverse problem of DC resistivity sounding, Piana
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Agostinetti and Malinverno (2010) firstly applied this technique to the
inversion of RF, where the number of layers was simultaneously in-
verted with Vs values. Transdimensional inversion is becoming popular
in the geoscience community, attracting increasing interest due to its
flexibility for model parameterization (Malinverno, 2002; Sambridge
et al., 2006, 2013; Bodin and Sambridge, 2009; Piana Agostinetti and
Malinverno, 2010, Dettmer et al., 2010, 2012, 2015; Gallagher et al.,
2011; Petrescu et al., 2016; Zheng et al., 2017).

Differing from linearized and traditional non-linear optimization
methods, data uncertainty estimates become vital in Bayesian inference
(Gouveia and Scales, 1998). Estimated data errors directly control the
form of posterior probability distribution. In a transdimensional for-
mulation, data uncertainty plays an even more critical role, as it di-
rectly controls the number of parameters in the solution models, that is
the complexity of the model space (Piana Agostinetti and Malinverno,
2010; Bodin et al., 2012). Different sources of errors can contribute to
data noise, and each of them has different statistical characteristics. The
commonly assumed Gaussian white noise, represented by a diagonal
covariance matrix, is not accurate enough to describe uncertainties in
observed RFs (Sambridge, 1999a; Piana Agostinetti and Malinverno,
2010; Kolb and Leki¢, 2014). Instead, the errors contained in RFs are
intrinsically correlated in time due to the deconvolution process within
limited frequency band (Piana Agostinetti and Malinverno, 2010).
Bodin et al. (2012) expanded TBI to the hierarchical case where the
variance and correlation of data errors are all treated as unknowns,
assuming a Gaussian correlation function. However, the deconvolution
process biases noise statistics in RFs, making it difficult to describe the
noise in deconvolved waveforms with simple statistics. By looking at
the noise statistics of a large number of realizations for noisy RFs, the
covariance matrix of data errors cannot be simply parameterized with a
Gaussian correlation function. Dettmer et al. (2012) proposed a pro-
cedure to estimate the full data covariance matrix by using an arbi-
trarily high-order autoregressive error model. Although this procedure
is promising at first sight, it assumes an exponential decay for the
correlation function, which may not be appropriate for receiver func-
tions.

To address these issues, Bodin et al. (2014) proposed an inversion
scheme based on a cross-convolution misfit function, where no decon-
volution is needed (Menke and Levin, 2003). This technique has re-
cently been used to constrain the upper mantle structure across North
America (Calo et al., 2016), and updated to also include SKS waveforms
to constrain anisotropic layering (Bodin et al., 2016). However, this
cross-convolution misfit function is not a direct data fit (i.e. the dif-
ference between observed and modeled data), but rather a conveniently
defined cost function, and it cannot be used to construct a proper
likelihood function for Bayesian inference (Frederiksen and Delaney,
2015). More recently, Dettmer et al. (2015) proposed a fully Bayesian
direct-seismogram inversion technique for receiver-side structure,
where the deconvolution was avoided by treating the source-time
function as an unknown in the inversion.

In this study, we propose an alternative likelihood function for
Bayesian inversion of scattered body waves. Our approach avoids de-
convolving noisy seismograms, as we directly invert the observed radial
seismograms. The estimated radial waveform is generated by convol-
ving the synthetic RF (computed for a given earth model) with the
observed vertical waveform. In this way, this misfit function represents
a direct fit to the observed radial waveform, and can be used to define a
likelihood function for Bayesian inference. We note that this misfit
function has already been used by Kolb and Leki¢ (2014) to solve the
deconvolution problem and in many other non-Bayesian inversion
studies (Kosarev et al., 1984; Farra et al., 1991; Farra and Vinnik,
2000). Although this misfit function is not new, in this work we use it
for the first time for Bayesian inversion of scattered body waves.
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2. Methodology

The proposed approach avoids two common problems in receiver
function imaging: (1) the deconvolution of noisy signals, and (2) the
estimation of errors in observed RFs. The data vector we are trying to fit
is the observed radial component Hys(t). It can be modeled with the
following convolution model:

Hops(£) = h(t, m)=s(t) + ex(t) 1)

where h(t, m) is the radial impulse response, s(t) is the source-time
function and e(t) is random noise with covariance C;. The radial im-
pulse response can be expressed in terms of the vertical response h
(tm) = R(t,m) * v(t,m), where R(t,m) is the theoretical receiver function
or transfer function. A deconvolution is still needed to compute R(t,m).
However, this is a deconvolution of synthetic seismograms, which is
stable as there is no noise involved (Dettmer et al., 2015). We can then
write:

Hops(£) = R(t, m)v(t, m)xs(t) + ey(t) 2

This model of the horizontal component still involves the unknown
source function s(t). But the term v(t,m) * s(t) can be estimated from our
observed vertical seismogram:

Vobs (1) = v(t, m)=s(t) + ey(t) (3
where e, (t) is a random noise with covariance C,, We then write:

Hops(£) = R(t, m) = (Vops (1) + ey (0)) + en(t) )
Hops (1) = R(t, m)#Vops(£) + R(t, m)=ey(t) + en(t) (5)

and assuming e,(t) and ey (t) are normally distributed with zero mean
and covariance C, and Cj, H,:s(t) can be seen as a vector of random
variables with mean R(t) * V() and covariance

Cq = cov(H,p,) = cov(Rxey) + cov(ep) = MC M + Cy, (6)

where the matrix M is defined from the vector R (M[ij] = R;;). We
have now a noise model for the observed horizontal component, which
allows us to write a likelihood probability distribution for H,, in Eq.
(5).

In this way, we can generate synthetic radial waveforms by con-
volving observed vertical component waveforms V,,,(t) with theore-
tical RFs R(t,m). For a given earth model m, the misfit function ®(t,m)
is defined as the Mahalanobis distance between the observed and syn-
thetic radial waveforms (Kolb and Leki¢, 2014):

(1, m) = (Hops()—R(t, m) % Vps(£))TCq" (Hops (D—R(L, m)xVos (1)) (7)

This misfit function represents a waveform fit, and hence has a
clearer physical meaning than the one proposed by Bodin et al. (2014).
The likelihood function of observed radial waveform for a given earth
model is then constructed as:

P(HIm) = _%((Hobs(t)_R(t’ m) V(1)) Cq ' (Hlops (1)

1
J@m)"ICql exp{

R( m) <V, ()} ©
where n is the number of data points in H(t).

Although we could use the exact form for Cq4, in this work assume
that C, = 0, and simply use Cq = Cy, as done in Kolb and Leki¢ (2014).
Since the amplitude of horizontal component is much smaller than the
one from the vertical component, the noise on the vertical component
may be negligible. That is, assuming C, = C,, we have cov
(R * ey) < cov(ep).

We can then solve our waveform inversion problem using transdi-
mensional hierarchical Bayesian inference, as implemented by Bodin
et al. (2012). The number of layers and the parameters for character-
izing the covariance matrix are all considered as unknowns. We use the
spectral approach of Shibutani et al. (1996) to calculate the theoretical
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