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Diagnostics of the shape and orientation of a rock failure zone based
on electrical measurements as an inverse problem of geophysics
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Abstract

Exploration geophysics is concerned with the development of methods and techniques for remote search for mineral deposits, solution of
various engineering and geological problems, mining monitoring, and diagnostics of zones of rock bursts and natural and technogenic tectonic
earthquakes. In this paper, we consider the diagnostic problem of exploration geophysics related to the determination of the shape and inclination
angle of a plane source of natural geoelectric field, which, under certain conditions, simulates a rock failure zone, e.g., during the preparation
of rock bursts at the sites of developed mineral deposits. This approach may also be useful in determining the shape and size of ore shoots
by electrical measurements on the ground surface. Evaluation of the parameters of a rock failure zone is required in the case of accumulation
of multiple fractures having charges of the same sign before a catastrophic failure. This problem is formulated as a Fredholm–Urysohn integral
equation of the first kind. The solution of the integral equation is sought using the Tikhonov regularization method of the second order.
© 2018, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

Exploration geophysics is based on the measurement and
subsequent interpretation of various parameters of natural and
artificial fields whose changes are determined by the inhomo-
geneous composition and variable properties of the crust and
the natural or man-made processes occurring in it. The
problems of exploration geophysics can be classified into
diagnostic problems, where there is no need to predict the
conditions of rock failure, and prognostic problems, where it
is required to predict, e.g., the location of a failure zone and
the strength of a possible seismic event.

The problems of determining the source parameters of a
tectonic earthquake or rock burst take a special place among
the problems of determining the shape and size of a potential
field source. As has been shown previously (Ivanov et al.,
2013), due to the accumulation of multiple cracks whose tips
have charges of the same sign at the final stage of preparation
of a rock burst, the electric field perturbations in rocks on the
ground and in the atmosphere can reach breakdown values,
causing atmospheric glow and breakdown of electrical cables

in the ground. In this case, the source zone is concentrated in
a narrow region of a tectonic fault which can be approximated
by a substantially plane ellipsoid (Ivanov et al., 2013). Thus,
electromagnetic field perturbations at the final stages of
preparation of an earthquake can be used to determine its
geometrical parameters.

From the viewpoint of applied mathematics, all problems
of interpretation of measured data are inverse and ill-posed
(Bakushinsky et al., 2011; Kabanikhin, 2009; Neto and Neto,
2013; Tarantola, 2005; Tikhonov and Glasko, 1964, 1965;
Zhdanov, 2007). Currently, the main method for solving such
problems is to use the Tikhonov regularizing functional
(Tikhonov and Glasko, 1964, 1965), whose minimum corre-
sponds to the solution of the inverse problem. In the present
paper, we discuss the diagnostic problem of determining the
shape and inclination angle of a plane potential field source
from measurements of the potential or intensity on the ground
surface, which reduces to solving the Fredholm–Urysohn
integral equation of the first kind. This problem has been
solved previously (Tikhonov and Glasko, 1964; Zhdanov,
2007; Zhdanov et al., 2011), but in a simpler formulation.
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Formulation and solution of the forward problem 

Suppose that an electric field (in what follows, we consider
only natural electric fields (NEF), but the proposed method is
applicable to any potential fields due to the versatility of the
mathematical model used) is generated by a plane source of
arbitrary shape Sp which has an inclination angle
γ ∈ [0°; 70°] and is located at a certain depth zM = H (without
crossing the boundaries of the first and second layers) in the
lower layer of a three-layer homogeneous and isotropic host
medium (Fig. 1).

The magnitude of the field potential of this source at an
arbitrary measurement point M on the ground surface will be
determined in polar coordinates according to the general
formula  

UM = ∫ 
Sp

uM dSp.  (1)

where Sp is the plane current source and the function uM
 is

given by the well-known formula of the potential of a point
current source (Bursian, 1972)

uM = C ∫ 
0

∞
J0 (m⋅D) exp (−m⋅ZM)

1 + W exp (−m⋅h)  dm, (2)

where D = √(XM − Xp)
2 + (yM − yp)

2  is the distance from the

point P of the integration region to the field measurement
point M (m); C is a coefficient that characterizes the electric
current intensity of the source; J0 (m⋅D) is a Bessel function

of zero order; h is the thickness of the second layer (m);

W = 
ρ2 − ρ1

ρ2 + ρ1
 is the reflection coefficient of the second layer;

ρ1,2 is the electrical resistivity of the first and second layers

(Ohm⋅m); XM = xM cos γ + zM sin γ and ZM = −xM sin γ +

zM cos γ are the formulas of transformation of the coordinates

of the measurement point from the Oxz system to the OXZ
system; γ is the angle of rotation of the Oxz  system; and m
is an integration variable.

Here and below, it is assumed that the depth of the NEF
source zM = H is known and only the results of measurements
along the Ox axis are used; i.e., yM = 0.

To integrate over an arbitrary region with a closed bound-
ary, we pass from the Cartesian coordinate system to the polar
coordinate system according to the following standard formu-
las: Xp = r cos ϕ and Yp = r sin ϕ, where ϕ ∈ [0; 2π] and r ∈
[0; ρ(ϕ)], with the function ρ (ϕ) defining the circuit of the
plane current source.

Next we transform expression (2) to the product of the
dimensional and dimensionless factors, making the changes of

variables: in the outer integral, w⋅h−1 = w
__

 , where w denotes
all parameters expressed in units of [m], and in the inner
integral, m⋅h = m

__
. Then integral (1) becomes

UM = h⋅C ∫ 
S
_

p

r
_
 






∫ 
0

∞
J0 (m

__
⋅D
__
) exp (−m

__
⋅Z
__

M)
1 + W exp (−m

__
)  dm

__





 dr
_

 dϕ, (3)

where D
__

 = √(X
__

M − r
_

 cos ϕ)2 + y
_

M − r
_

 sin ϕ)2 .

To calculate the inner improper integral, we approximate

the integrand fraction 
1

1 + W exp (−m
__

 ) = ∑ 
k=1

11

q (k) exp [−m
__

 (k −

1)], where the coefficients q (k) are determined by the least
squares method.

Applying the Weber–Lipschitz integral yields the following
formula for calculating the magnitude of the potential at an
arbitrary point M on the ground surface: 

UM = C ⋅ h   ∫ 
0

2π

  






 ∑ 
k=1

11

q (k)  ∫ 
0

ρ
__
(ϕ)

  
r
_

 dr
_

√R







 dϕ. (4)

Here R = r
_

 2 + B⋅r
_
 + A, A = X

__
M
 2 + (Z

__
M + k − 1)2, B =

−2X
__

M cos ϕ, and the inner integral in (4) is equal to

   ∫ 
0

ρ
__
(ϕ)

  
r
_

 dr
_

√R
 = 




√R  − 

B
2

 ln 



r
_
 + 

B
2

 + √R







0

ρ
__
(ϕ)

= F (X
__

M, Z
__

M, ρ
__

 (ϕ), γ).

To determine the vertical intensity component of the NEF,
we calculate the derivative of the function UM with respect to
the variable z

_
M: 

E M = C ⋅ h  ∫ 
0

2π

 






∑ 
k=1

11

q (k)   ∫ 
0

ρ
__
(ϕ)

  
r
_

 ⋅ kdr
_

√R3







 dϕ, (5)

where k = r
_

 sin γ cos ϕ + (Z
__

M + k − 1) cos γ.
The inner integral in (5) is also quite easy to calculate, but

calculations have shown that the resulting formula is not well
suited for numerical implementation due to its complexity andFig. 1. Schematic of the host medium and plane field source.
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