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Fast computation of MT curves for a horizontally layered earth
with laterally inhomogeneous conductivity perturbations
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Abstract

A new algorithm is proposed to compute magnetotelluric (MT) curves for a horizontally layered earth with laterally inhomogeneous
conductivity. It is fast and ensures correction of induced eddy currents and galvanic distortions of MT curves produced by 3D inhomogeneities.
The computation time is short (~1 min) due to the use of the perturbation method for solving Maxwell’s equations. The suggested algorithm
has a better performance than the more costly classical Trefftz method but has an applicability limitation.
© 2017, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

Magnetotelluic (MT) responses of a complex earth with 3D
inhomogeneities are commonly distorted by induced eddy
currents and galvanic distortion (i.e., bear a static shift) and
thus differ from theoretical normal curves of depth-dependent
electrical conductivity for a horizontally layered earth under
the station. If remaining uncorrected, the static shift leads to
misinterpretation of the collected MT profiles and to a wrong
resistivity model. Specifically, distortions produced by shallow
structures may be misinterpreted as deep conductors. Much
research has aimed at improving the reliability and perform-
ance of MT data, and many attempts have been undertaken
to account for the earth complexity and to correct static shifts
(Berezina et al., 2013; Ivanov and Pushkarev, 2010; Pellerin
and Hohmann, 1990; Sasaki, 2004; Zinger and Fainberg,
2005).

Efficient ways for static shift remediation which would
require low computation costs and little change to the existing
acquisition tools are urgent for the practice of MT soundings.
In a previous study, we (Plotkin and Gubin, 2015) suggested
an algorithm for static shift correction based on the Trefftz
method. In this method, the earth is presented as an assem-
blage of constant-conductivity blocks, and the modeling
domain consists of several laterally inhomogeneous layers of

equal blocks lying over a homogeneous subsurface. Inversion
seeks conductivities within the blocks of each inhomogeneous
layer, thicknesses of these layers, and conductivity below
them. The inversion algorithm was tested on synthetic data
and was applied to interpret distorted MT curves from fault
zones of Gorny Altai (Plotkin et al., 2017). With this approach,
inversion can be run on an ordinary desktop PC, at a
computation time and to an approximation degree depending
on the number of blocks. In the cited studies, the model
consisted of three layers, each with 25 blocks (five blocks
along the OX axis), and altogether 79 exponential parameters
were sought. 

This study presents another numerical model which pro-
vides much faster computation for times greater numbers of
blocks and layers than the previous algorithm. Its main
limitation is in the applicability of the perturbation method
used for solving the Maxwell equation. 

Numerical model

Let the earth have the electrical conductivity
σ (x, y, z) = σ0 (z) + σ′(x, y, z), and σ0 (z) be a piecewise con-

stant function (normal depth-dependent conductivity). Max-
well’s equations are solved with the method of perturbation,
at σ0 (z) >>  σ′(x, y, z), as the series
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rot E
(0) + E(1) + …

 = −iωµ0 H
(0) + H(1) + …

 
,

rot H
(0) + H(1) + …

 = (σ0 (z) + σ′) E
(0) + E(1) + …


 
.
 (1)

In the zero approximation, for vertical plane-wave inci-
dence, 

∆E(0) − k0 2 E(0) = 0,  k0 2  = iωµ0 σ0 (z). (2)

In the first approximation, at zero field divergence

div 
(σ0 (z) + σ′) 

E
(0) + E(1) + …



 = 0, we obtain

div E
(1)
 = − 

1
σ0 (z) E

(0) grad σ′,
(3)

∆E(1) − k0 2 E(1) = iωµ0 σ′ E(0) − 
1

σ0 (z) E
(0) grad σ′.

The second equation for the first-approximation field (3)
differs from the zero-approximation case (2) only in the
presence of a right-hand side as a two-dimensional Fourier

series with known coefficients. Note that div 
E

(1)
 ≠ 0 in the

first approximation, which means the TM mode excitation
(Ez ≠ 0) and additional distortions in MT curves (note that the
derivation in (Plotkin, 2013) did not include the last term in
the right-hand side of (3)).

It is convenient to present Maxwell’s equations (1), for both
zero- (2) and first-approximation (3) solutions, as a system of
first-order equations (Alexandrov, 2001) for space-time field
harmonics ~exp (iωt + ikx x + iky y) in the matrix form:

dX
dz

 = AX,  X = 

Hx, Hy, Ex, Ey

 T
, (4)

where X is the vector of horizontal field components, T
denotes transposition, and the matrix A is 

A = 






















0

0

kx
 ky

σ0
 (z)

iωµ0 + 
ky

 2

σ0
 (z)

  

0

0

− iωµ0 − 
kx

 2

σ0
 (z)

− 
kx

 ky

σ0
 (z)

  

− 
kx

 ky

iωµ0

− 
kx

 2

iωµ0
 − σ0

 (z)

0

0

  

kx
 2

iωµ0
 + σ0

 (z)

kx
 ky

iωµ0

0

0






















 . (5)

Let the axis OZ be directed depthward (inward the
horizontally layered earth), and the depth-dependent conduc-
tivity σ0 (z) be expressed via the earth’s parameters σn, dn,

and kzn = √kx
2 + ky

2 + iωµ0 σn , n = 1, …, N, dN → ∞. Then, the
transposition of the horizontal field components across a
homogeneous layer of the thickness dn, according to (4), is
given by

Xn+1 = eAndn Xn,  An = A (σn). (6)

The matrix exponents are commonly calculated (see below)
using MatLab. If the matrix An can be reduced to the diagonal
form (this condition fulfills in all numerical calculations), the
exponents can be found as 

eAndn = CSC−1 , (7)

where C is the matrix with eigen vectors An in its columns,

S is the diagonal matrix with the respective exponents
exp(kzn dn) on the principal diagonal, and kzn are the eigen

values of the matrix An. The extrapolation of the horizontal
field components X0 from the earth surface depthward to the
interface with the underlying homogeneous subsurface is
described by time-order product of matrix exponents for all
intermediate layers. For the homogeneous subsurface, one has

to ensure the absence of the solutions XN
+ that grow at

z → ∞, which means that

XN
+  = CS

~
C−1eAn−1dn−1 … eA1d1X0 = DX0 = 0,

D = CS
~

C−1eAn−1dn−1 … eA1d1, (8)

where the diagonal matrix S
~

 (compare with (7)) has 1 and 0
instead of the increasing and decreasing exponents, respec-
tively. At DX0 = 0, the impedance tensor is calculated as
(Alexandrov, 2001):
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where Dik are the elements of the matrix D. This procedure
is valid for any spatial harmonic, including the zero-approxi-
mation wave with kx = ky = 0.

If the primary source of the MT field fits the normal plane
incidence (which fulfills in middle latitudes), the spatial field
harmonics recorded on the surface are obviously of deep
origin. These harmonics in a layered earth are associated with
the conductivity perturbations σ′ (x, y, z) and, hence, with the
right-hand sides of the first-approximation equations (3).
The right-hand sides are determined by both the magnitude of
the zero-approximation field in the layer containing the
perturbations σ′ (x, y, z) and by the amplitudes of their spatial
harmonics. 

Fields of laterally inhomogeneous thin layers

Let some layer at the depth z′ enclose a thin conducting
layer with σ′ (x, y, z) = Σ (x, y) δ (z − z′), where Σ (x, y) is its
total longitudinal conductance and δ (z) is the delta function.
The first-approximation equation for this case is

∆Ex,y
 (1) − k0

 2Ex,y
 (1) = Fx,y δ (z − z′), 

Fx = Ex
 (0)(z′) 




iωµ0 Σ − 

1
σ0 (z′) 

∂2Σ
∂x2




 − Ey

 (0)(z′) 1
σ0 (z′) 

∂2Σ
∂x∂y

,(10)

Fy = −Ex
 (0)(z′) 1

σ0 (z′) 
∂2Σ
∂x∂y

 + Ey
 (0)(z′) 




iωµ0 Σ − 

1
σ0 (z′) 

∂2Σ
∂y2




 .
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