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One of themost common problems in the North Sea is the occurrence of salt (solid) in the pores of Triassic sand-
stones. Many wells have failed due to interpretation errors based conventional substitution as described by the
Gassmann equation. A way forward is to device a means to model and characterize the salt-plugging scenarios.
Modelling the effects of fluid and solids on rock velocity and density will ascertain the influence of pore material
types on seismic data. In this study, two different rock physics modelling approaches are adopted in solid-fluid
substitution, namely the extended Gassmann theory and multi-mineral mixing modelling. Using the modified
newGassmann equation, solid-and-fluid substitutions were performed from gas or water filling in the hydrocar-
bon reservoirs to salt materials being the pore-filling. Inverse substitutions were also performed from salt-filled
case to gas- and water-filled scenarios. The modelling results show very consistent results - Salt-plugged wells
clearly showing different elastic parameters when compared with gas- and water-bearing wells. While the
Gassmann equation-based modelling was used to discretely compute effective bulk and shear moduli of the
salt plugs, the algorithm based on the mineral-mixing (Hashin-Shtrikman) can only predict elastic moduli in a
narrow range. Thus, inasmuch as both of thesemethods can be used tomodel elastic parameters and characterize
pore-fill scenarios, the New Gassmann-based algorithm, which is capable of precisely predicting the elastic pa-
rameters, is recommended for use in forward seismic modelling and characterization of this reservoir and
other reservoir types. This will significantly help in reducing seismic interpretation errors.
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1. Introduction

Geologically, pore-spaces of hydrocarbon reservoirs are filled with
water, oil or gas; but sometimes, the pore-spaces are filled with solids
(heavy oil, shale or salt). This study aims at providing solution to the
challenge of determining the elastic response of hydrocarbon reservoir
rocks filled with solid (halite in this case) materials in addition to
fluid. This is one of the common challenges in the North Sea, where
gas-bearing good-quality reservoir of the Triassic sandstones looks
almost identical with salt-plugged rock.

Interpretation of acoustic and elastic response based on conven-
tional substitution (fluids only) as described by the Gassmann equation
has led to many wells failing. A way forward is to device a means to
model and characterize the salt-plugging scenarios by performing
fluid-and-solid substitutions and forward seismic modelling. This

study focuses on the former aspect of the exercises i.e. modelling and
characterizing the salt-plugging scenarios by performing fluid-and-
solid substitutions. Distinguishing solid-filled reservoir rocks from
potentially gas-bearing rocks is very crucial for the Oil and Gas industry.

The prediction of seismic properties for pores filled with different
fluids is one of themost important problems in the rock physics analysis
of logs, cores and seismic data (Mavko et al., 2009). Physical properties
of porous rocks, such as seismic velocities (compressional and shear
waves), depend on elastic properties of the porous frame and themate-
rials filling the pore spaces. Modelling the effects of fluids and solids on
rock velocity and density will ascertain the influence of pore material
types on seismic data. The seismic response of reservoirs is directly con-
trolled by compressional (P-wave) and shear (S-wave) velocities Vp and
Vs respectively alongwith densities (De-Hua and Batzle, 2004). Han and
Batzle in their work on ‘fluid-saturation effects on seismic velocities’
show how themeasured dry and water-saturated P- and S-wave veloc-
ities of sandstone relate with differential pressure and density of the
earth medium. The authors demonstrate that with water saturation,
P-wave velocity increases slightly, whereas S-wave velocity decreases
slightly.
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Brown and Korringa (1975) generalized the Gassmann equation
(Gassmann, 1951) for anisotropic porous media. Recently, literatures
have been published on the extension of the Gassmann equation for
solid substitution in the pore space (Ciz and Shapiro, 2007; Ciz et al.,
2008). Ciz and Shapiro (2007) generalized the Gassmann equations
for porous media saturated with a solid material. As a way of validating
the new theory, Ciz and Shapiro (2007) heuristically extended the
elastic equations for the viscoelastic material filling the pore space, in-
troducing complex bulk and shear moduli Kif and μif into the equations.
Ciz et al. (2008) demonstrate the theory and applications of the
extended Gassmann equations for porous rocks saturated with a solid
material. The theoretical results obtained with numerically simulated
data using the finite-element algorithm (FEM) of Arns et al. (2002)
were compared. The algorithm uses a formulation of the static linear
elastic equations, and finds the steady state solution by minimizing
the strain energy of the system. The authors apply this algorithm
to compute the effective elastic constants of the isotropic porous
model “saturated” in the pore space with another elastic solid material.
The numerical simulations provide the “static” effective bulk and
shear moduli of such a model and the tests are performed on the
Gaussian random field model GRF5 created and analyzed by Saenger
et al. (2005).

In this study, two different rock physics modelling approaches are
adopted in the solid-fluid substitution. The results of the two models
are compared, from which the better option with optimum and more
robust result is recommended for furthermodelling of seismic response
of solid-and-fluid reservoir contents. One model is to treat the salt as a
pore filling, similar to water and hydrocarbons, using the extended
Gassmann theory which enables a substitution for solid and fluid
pore fills (Auduson, 2013, Auduson, 2015). Another option is to treat
the solid pore fill as part of the rock matrix, by classic multi-mineral
mixing (Hashin and Shtrikman, 1963, Auduson, 2013). To this end,
modelling codeswere generated using industry-standard programming
tools.

2. Backgrounds of modelling algorithms

2.1. Petroelastic tensional/force theory

Here, a porous rock of porosity φ is considered. It is possible that an
elastic solid fills up the pore space by a process of diapirism. The exter-
nal surface of the porous rock is taken as Ρ, which cuts and seals the
pores. The pore space is assumed to be interconnected, taking the
form of the Biot's medium (Biot, 1962, as applied by Barryman, 1989).
The surface of the pore space is defined as Θ. The external surface Ρ
coincides with the surface of the pore space Θ, where it cuts the
pores. Their normal reactions are opposite at the interfacing points,
i.e., ωk′ = − ωk. There is a traction component (symbolized here as
Γj) at any point, ᵽ of the external surface, Ρ given by;

ð1Þ

where ωi(ᵽ) is the component of the outward normal of Ρ and δjkς is the
homogeneous confining stress.

Application of small uniform changes in both confining stress δjkς and
pore stress δjkp , is assumed. The pore stress term is now the stress field in
the solid material filling the pore-space. If the material saturating pore-
space is a fluid, the pore stress decreases to the pore pressure. In re-
sponse to the overburden pressure, points of the external surface Ρ are
displaced by di(ᵽ) to their final position. This displacement is assumed
to be infinitesimal in comparison with the size of volume the rock
being investigated.

Following the examples of Brown and Korringa (1975) and Shapiro
and Kaselow (2005), the deformation υ, of a rock sample by symmetric

tensors representing the deformation of the rock sample can be
described as;

ð2Þ

and the deformation of the pore space described as;
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Applying Gauss' theorem for a continuous elastic body replacing the
porous matrix and the continuous pore-filling elastic material (Eqs. (4)
and (5)), we have;

ð4Þ
ð5Þ

The integrands in Eqs. (4) and (5) represent the strain tensors. The
volume-averaged strain of the bulk volume is depicted as the quantity
ωjk/V, while the quantity εjk/V represents a volume-averaged strain of
the pore volume. In this case, V is the volume of the porous body and
Vφ is the volume of all its connected pores. Thus, three fundamental
compliances of an anisotropic porous body are introduced:
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where δlme = δlm
f
− δlm

g
is the differential stress, while the indices dry, gr,

and φ are related to the dry porous frame, the grain material of the
frame, and the pore space of the dry porous frame respectively.
Expressions (6) to (8) represent the tensorial generalization of Brown
and Korringa's (1975) models. There exists a fourth compliance tensor,

C0
jklm ¼ −

1
V

∂εjk
∂δdlm

 !
δg
; ð9Þ

which is not isolated due to the reciprocity theorem (Shapiro and
Kaselow, 2005), relating to the tensorial force between the dry porous
frame and the grain material of the frame only;

C0
jklm ¼ Cdry

jklm−Cgr
jklm; ð10Þ

A fifth tensor is required to describe the compliance of the pore
spacefilled by a solidmaterial. It is heuristically defined in the following
way:

Sifijkl ¼ −
1
Vφ

∂εjk
∂δ f

lm

 !
con

; ð11Þ

where the index if (infill) is related to the body of the pore-space infill
and the subscript con is a constant infill mass. This generalized (in the
sense that the infill can be solid or fluid) compliance tensor Cjklm

if
, is re-

lated to the volume-averaged strain of the pore space and therefore dif-
fers from the compliance tensor of the grain material of the pore infill
Cjklm
ifgr

(with the index ifgr denoting the pore-infill grainmaterial). The ef-
fective compliance tensor of the composite porous rock with a solid
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