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High computation cost and generating solutions without geological sense have hindered the wide application of
Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but
subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk.
Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic
smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce
artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological
constrainedmini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted
to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the
structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with
more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method
on realistic synthetic model.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Full Waveform Inversion (FWI) has the potential to meet high
resolution object of subsurface property characterization in seismic
exploration. It depicts the frame of matching modeling data, in terms
of misfit function, with the field data by finding optimal subsurface pa-
rameters. In general, the solutions to this problem can be categorized as
local optimization (Lailly, 1983; Tarantola, 1984; Pratt et al., 1998; Wu
et al., 2014; Luo et al., 2016) or global optimization methods
(Afanasiev et al., 2014; Gao et al., 2016; Datta and Sen, 2016) according
to whether or not the gradient of themisfit function formodel updating
is used. The gradient based iterative updating strategy has overwhelm-
ing dominance with affordable computing cost since the descent direc-
tion can be calculated by cross correlation of the source wavefield and
reverse propagation of the misfit function residuals (Tarantola, 1984).
Especially, the advance in high-performance computing propels the de-
velopment of Reverse Time Migration (RTM) which can be an efficient
engine to speed up FWI. However, this progress has increased the de-
mand for larger surveys, with a significant growth of source number
for wide azimuth acquisition in 3D which slows down the iterative
updating process significantly. The computation cost for FWI with tens

or hundreds of prestack RTM is still one of the obstacles for practical
application.

The frequency domain direct solver technique is efficient with the
cost of one complex LU decomposition or matrix inversion and the
cost of a matrix-vector multiplication for each source (Krebs et al.,
2009). Frequency domain FWI is stable and efficient with good results
by inverting a small number of frequencies recursively (Pratt, 1999),
but hasmemory limit to tackle the largematrix system for 3Dproblems.
Source encoding, on the other hand, assembling several sources to-
gether for seismic migration/imaging, allows for the reduction of simu-
lation quantity so as to speed up prestack data processing (Morton and
Ober, 1998; Jing et al., 2000; Romero et al., 2000; Neelamani et al., 2008;
Dai et al., 2013). Source encodingwaveform inversion is investigated by
the geophysical community with immense enthusiasm (Krebs et al.,
2009; Ben-Hadj-Ali et al., 2011; Li et al., 2012; Moghaddam et al.,
2013; Anagaw and Sacchi, 2014; Son et al., 2014). It reduces the cost
of FWI dramatically since the number of seismic simulations for the
misfit function is proportional to the number of sources. By assuming
zero mean, the cross-talks for both the misfit function and its gradient
are suppressed by the specially devised encoding technique at each iter-
ation. However, such methods are usually fast in initial iterations, the
need to average out the cross-talk makes them slow to converge later
on (van Leeuwen and Herrmann, 2013). Instead of source encoding,
van Leeuwen and Herrmann (2013) investigated a hybrid optimization
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strategy developed by Friedlander and Schmidt (2012), which is the
stochastic optimization method using a different, randomly chosen, se-
quential sources for updating. It ensures the reduction of synthetic com-
putation time while free of cross-talk. In machine learning, this hybrid
scheme shares the similar idea as mini-batch gradient descent optimi-
zation.While this does not have the trouble of source cross-talk, the ac-
quisition footprints have to be dealt with because of the lack of shot
data. In general, Gaussian smoothingfilter canbe applied to the gradient
as away tomitigate the footprints. However, an isotropic Gaussianfilter
smears the boundary of structures in the model which leads to a model
with less geological features. Guitton et al. (2012) applied directional
Laplacianfilters to themodel reparameterization, leading to a geological
constrained full-waveform inversion. Not only did it achieve faster con-
vergence at early iterations but it generated models with geological
meaning. Mao et al. (2016) applied image-guided smoothing to reduce
the crossline footprint effects for marine Narrow Azimuth acquisition
(NAZ) data and tests showed that the proposed FWI generated sharp
contrast update around key structures.

This paper studies the feasibility of FWI in combination with mini-
batch gradient optimization and structure oriented filter, to accelerate
iterations and constrain model updates. Structure-oriented bilateral fil-
tering (Hale, 2011) is adopted for themini-batch gradient smoothing. In
the following, the theory of FWI is first reviewed as the basis for later
sections. Then the mini-batch misfit and conjugate gradient FWI is for-
mulated. In the third section, the geological constrained structure-
oriented filter smoothing is presented. Finally, the modified shallow
water Marmousi-II model is used to illustrate the performance of this
method, both on efficiency and inversion quality. We also illustrate
the inversion results of isotropic and geological constrained anisotropic
mini-batch gradient smoothing. The last part is the discussions and
conclusions.

2. Iterative approximation solution of the full waveform inversion

FWI is a highly nonlinear optimization problem, for which iterative
numerical methods are typical solutions for the efficiency and easiness
fitting on large scale computing platforms. There are many ways to de-
fine the misfit functions, for instance, l1 norm, dynamic warping, corre-
lation and adaptive Wiener filter et al. However, the most widely used
misfit function is the summing squares of the wavefield amplitude sub-
traction, also known as least-square optimization. Taking a two-
dimension problem as example, the objective function can be formu-
lated as

J mð Þ ¼ 1
2

X
xs

X
xr

ZT
0

dobs t; xs; xrð Þ−dsyn t; xs; xr ;mð Þ�� ��2
2dt; ð1Þ

where dobs(t,xs,xr) and dsyn(t,xs,xr,m) denote the observed and syn-
thetic data (pressure filed) by subsurface parameter m, in which xs, xr
and t are the indexes of source location, receiver location and recording
time respectively. Here ‖•‖22 is the square of the l2 norm. In Eq. (1), the
data residual integral is conducted over time for each source-receiver
pair. The cost for the misfit function is a full simulation of all shots,
data residual summation, with the amount of calculation proportional
to shooting number.

The objective of FWI is to find an optimal model m∗ which gets the
minimum value of the misfit function J(m∗) = min J(m). Mathemati-
cally, it means the gradient of the objective function with respect to
model is zero

∂ J mð Þ
∂m

¼ 0: ð2Þ

However, Eq. (2) is not equivalent to theminimization process of the
misfit function, since thewave evolution is nonlinearwith respect to the

subsurfacemediumparameters. Itmakes the objective function develop
multiple minima. The local differential Eq. (2) cannot guarantee a solu-
tion to the global minima. In fact, for the real cases, plenty of factors can
make the FWI easily converge to one of the local minima, such as the
lack of low frequencies, the presence of noise, and the approximate
modeling of the wave propagation in real media. It is still a great chal-
lenge for the seismic exploration community to develop a FWI algo-
rithm with global convergence from poor starting model. In the
following, we test our method with a smoothed true velocity as the ini-
tial model m0.

A first order Taylor series expansion of the objective function gradi-
ent in the vicinity of m0 gives the following expression

∂ J mð Þ
∂m

≈ −
∂ J m0ð Þ
∂m

þ ∂2 J m0ð Þ
∂m2

m−m0ð Þ: ð3Þ

Combine Eqs. (2) and (3), we get

Δm ¼ −
∂2 J m0ð Þ
∂m2

" #−1
∂ J m0ð Þ
∂m

: ð4Þ

with Δm=m−m∗. The first and second order derivative of the misfit
function with respect to model are named as Fréchet derivative and
Hessian respectively.

Inserting Eq. (1) into the gradient of the misfit function, we get

∂ J m0ð Þ
∂m

¼ −
X
xs

X
xr

ZT
0

dobs t; xs; xrð Þ−dsyn t; xs; xr ;mð Þ� �∂dsyn t; xs; xr ;mð Þ
∂m

dt:

ð5Þ

And the Hessian matrix is expressed as

∂2 J m0ð Þ
∂m2

¼
X
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ð6Þ

Eq. (4) uses both the Fréchet andHessian for themodel perturbation
calculation, and methods used in this form are called Newtonmethods.
The newtonmethods not only make use of the objective gradient infor-
mation but also the second derivative (Hessian). It is locally quadrati-
cally convergent, in theory, with the fastest convergence rate. The
Hessian can be separated into two standalone parts, as shown in
Eq. (6). The first part is the product of the synthetic data derivative
with the model and can be considered as the contribution of the single
scattering, that is, Born approximation. It provides proper weighting to
focus the energy similar to the illumination compensation. The second
part of the Hessian in Eq. (6), including second order derivative of the
synthetic data with respect to the model, takes the multi scattering in
thewavefields into account for themodel updating. However, consider-
ing the high dimensionality of the model, the cost for evaluating the
Hessian (mainly the second term) is prohibitive. And for high nonlinear
objective function of the complex model and approximate synthetic
data modeling for the real media etc., the complete Hessian has limited
contribution to the inversion convergence and inversion quantity. In all
practical application, people tend to approximate the Hessian with the
balance between cost and benefits. For the typical cases, substituting
the inverse Hessian by a scalar α leads to the steepest-descent method
and only keeping the first term of the Hessian is the Gauss-Newton
method.

Over the last decade, the most popular local optimization algorithm
for solving FWI problems is based on the conjugate gradient method
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