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When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method
is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the
coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case,
when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced.
In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this
paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde
matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde
matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of
a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the
algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of
MATLAB.
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1. Introduction

The finite difference method has been widely applied in the numer-
ical simulation of seismic wave propagation (Tan and Huang, 2014), as
its relatively straightforward implementation and flexible ability to
deal with complex objectives. Alterman and Karal (1968) applied finite
difference method into seismic numerical simulation in 1968. Alford
et al. (1974) studied the accuracy of finite difference method and
discussed the grid dispersion. Virieux (1984, 1986) investigated the
SH and P-SV wave propagation by finite difference method based on
velocity-stress wave equations.

Staggered-grid finite difference (SGFD)method (Pitarka, 1999) is an
effective tool to increase the accuracy of numerical simulation, which
means that the model parameters and variables are arranged at
different grids. Staggered-grid finite difference method was first used
by Graves (1996) in 1996 to simulate 3D elastic media. Moczo et al.
(2000) discussed the stability and grid dispersion of fourth-
order staggered-grid finite difference method. As its effectiveness,
staggered-grid finite difference method has been applied into the

wave propagation in complex media (Gao and Zhang, 2013; Zhang
and Gao, 2014a; Zhang and Gao, 2014b).

In order to increase the accuracy of SGFD method, we can use
higher-order SGFD method, or decrease the time step and the grid
spacing. In addition, optimization methods are employed to calculate
finite difference coefficients to achieve better accuracy (Wang et al.,
2017; Yang et al., 2017), such as simulated annealing method (Zhang
and Yao, 2013), least-squares method (Ren and Liu, 2014). Tradition-
ally, high-order finite difference method is one of the most convenient
ways to increase the accuracy, as it does not need extra operations at
the interfaces.

We find that the FD method is not accurate when the FD order is
high enough through the dispersion analysis if the FD coefficients are
calculated by matrix inverse operator of MATLAB. The reason is that
the coefficient matrix of the formula of calculating finite difference
coefficients is close to be singular, but matrix inverse is used in the
calculation. We realize that the coefficient matrix can be translated
into a Vandermonde matrix. Then matrix inverse in the calculation of
finite difference coefficients can be avoided, and is replaced by a
recursive algorithm based on Vandermonde matrix (El-Mikkawy,
2003; Hassan et al., 2012). This algorithm has better accuracy than the
way of matrix inverse operator in MATLAB.

This paper is organized as follows. The dispersion parameters
and stability condition of elastic media are derived in Section 2. In
Section 3, we give the algorithm based on Vandermonde matrix
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of computing finite difference coefficients. In Section 4, the
numerical results of two methods of calculating finite difference
coefficients are compared. Finally, we state the conclusion of this
paper in Section 5.

2. Formulation

2.1. Wave equations in elastic media

We concentrate on constructing a finite difference scheme for the
following elastic wave equations that have been widely used in seismic
numerical simulation,

∂u
∂t

¼ A
∂u
∂x

þ B
∂u
∂y

ð1Þ

where the unknown vector is

u ¼ vx vz τxx τzz τxz½ �T ð2Þ

The coefficient matrices are defined as
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1
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1
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where, (vx,vz) is the velocity components, (τxx,τxz,τzz) is the stress
components, λ and μ represent the Lame parameters, and ρ is the
density.

2.2. Finite difference scheme

In staggered-grid finite difference scheme, second-order accuracy
derivative in time domain is

∂ f
∂t

¼ 1
τ

f t þ τ
2

� �
− f t−

τ
2

� �� �
þ Ο τ2

� � ð5Þ

And the 2M-th order accuracy derivative in space domain is
expressed as (Dong et al., 2000)

∂ f
∂x

¼ 1
h

XM
m¼1

am f xþ h
2
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þ Ο h2M
� �

ð6Þ

where, τ is the time step, h is the grid space, am (m=1,2,…,M) are the
staggered-grid finite difference coefficients.

2.3. Numerical dispersion parameters

The numerical dispersion can be measured by the dispersion
parameters. Based on Eq. (A11), the numerical dispersion can be repre-
sented by the numerical dispersionparameterwhich is related to spatial
parameters

ηi ¼
2
XM
m¼1

am sin m−
1
2


 �
kx ih


 �

k̂x ih
ð7Þ

Fig. 1.Dispersion parameters (a)η and (b) δ variedwithβ for different FDorders. Here, τ=
0.001 s, h=10m, the FD coefficients are calculated based on the matrix inverse operator
of MATLAB.
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