Accepted Manuscript

Total-variation based velocity inversion with Bregmanized operator splitting algorithm

Toktam Zand, Ali Gholami

PII: S0926-9851(17)30507-4

DOI: doi:10.1016/j.jappgeo.2018.01.028

Reference: APPGEO 3427

To appear in: Journal of Applied Geophysics

Received date: 20 May 2017 Revised date: 24 January 2018 Accepted date: 31 January 2018

Please cite this article as: Zand, Toktam, Gholami, Ali, Total-variation based velocity inversion with Bregmanized operator splitting algorithm, *Journal of Applied Geophysics* (2018), doi:10.1016/j.jappgeo.2018.01.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Total-variation based velocity inversion with Bregmanized operator splitting algorithm

Toktam Zand, Ali Gholami
Institute of Geophysics, University of Tehran, Tehran, Iran

Abstract

Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmaized operator spliting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic

Email addresses: e-mail: toktam.zand@ut.ac.ir (Toktam Zand), e-mail: agholami@ut.ac.ir. (Ali Gholami)

Download English Version:

https://daneshyari.com/en/article/8915429

Download Persian Version:

https://daneshyari.com/article/8915429

Daneshyari.com