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Full waveform inversion (FWI) of ground penetrating radar (GPR) is a promising technique to quantitatively
evaluate the permittivity and conductivity of near subsurface. However, these two parameters are simulta-
neously inverted in the GPR FWI, increasing the difficulty to obtain accurate inversion results for both parame-
ters. In this study, I present a structural constrained GPR FWI procedure to jointly invert the two parameters,
aiming to force a structural relationship between permittivity and conductivity in the process of model recon-
struction. The structural constraint is enforced by a cross-gradient function. In this procedure, the permittivity
and conductivity models are inverted alternately at each iteration and updated with hierarchical frequency com-
ponents in the frequency domain. The joint inverse problem is solved by the truncated Newton method which
considering the effect of Hessian operator and using the approximated solution of Newton equation to be the per-
turbation model in the updating process. The joint inversion procedure is tested by three synthetic examples. The
results show that jointly inverting permittivity and conductivity in GPR FWI effectively increases the structural
similarities between the two parameters, corrects the structures of parameter models, and significantly improves

Keywords:

Ground penetrating radar
Full waveform inversion
Cross-gradient function
Truncated Newton method
Joint inversion

the accuracy of conductivity model, resulting in a better inversion result than the individual inversion.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Ground penetrating radar (GPR) is a nondestructive geophysical
technique utilized to investigate properties of the shallow subsurface.
It has been used in many fields, such as civil engineering, environmental
monitoring, archaeology and glaciology. Tomography technique for GPR
data based on the inversion of first arrival times is an effective tool to
delineate the geometry of subsurface or characterize the structure of
buried objects. However, the resolution provided by the ray-based to-
mography is limited by using only the travel time kinematics, which
causing insufficient resolution scale that approximately the diameter
of first Fresnel zone (Williamson and Worthington, 1993; Ernst et al.,
2007a). By contrast, full waveform inversion can take full use of wave-
forms, result in a higher resolution that of the order of half of wave-
length. FWI was originally developed for the acoustic and elastic wave
equations in the seismic exploration (Lailly, 1983; Tarantola, 1984;
Pratt and Worthington, 1990; Pratt, 1990; Nuber et al., 2015), then is
rapidly developed for Maxwell's equations to estimate the permittivity
and conductivity of subsurface medium (Ernst et al., 2007b; Meles
et al., 2010; Belina et al., 2012; Yang et al., 2013; Lavoue et al., 2014;
Keskinen et al., 2017). In GPR FWI, permittivity and conductivity are si-
multaneously inverted, which increases the difficulty to construct
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reliable models for both parameters. Improving the accuracy of each pa-
rameter model is critical to improve the overall accuracy of inversions.

Joint inversion is an effective way to reduce the uncertainty of inver-
sion and increase the accuracy of reconstructed models in the geophys-
ical inverse problem. Two types of approaches are usually used to
couple different geophysical parameters: one is to combine parameters
through petrophysical relationship (Ghose and Slob, 2006; Gao et al.,
2012), and the other is to couple parameters with structural constraint
that enforced by a cross-gradient function (Gallardo and Meju, 2003,
2004; Meju et al., 2003). Joint inversion with structural constraint re-
duces the set of acceptable models by increasing the structural similar-
ity between different parameter models. Gallardo and Meju (2003,
2004) firstly introduced the concept of cross-gradient function and
jointly inverted the DC resistivity and seismic traveltime data. The
cross-gradient function is widely used for the joint interpretation of dif-
ferent parameters or datasets, such as P-wave and S-wave velocities
(Tryggvason and Linde, 2006), crosshole seismic and GPR data (Linde
et al., 2008), conductivity and P-wave velocity (Hu et al., 2009; Shi
et al., 2017), ERT and GPR traveltime data (Doetsch et al., 2010;
Bouchedda et al.,, 2012). Meanwhile, the cross-gradient function also
can be utilized to combine multiple geophysical datasets (Gallardo,
2007; Moorkamp et al., 2011; Abubakar et al., 2012; Zhu and Harris,
2015; Pak et al., 2017).

The local optimization method used to solve the inverse problem in
GRP FWI is critical to obtain accurate results for both parameters. A
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mainly difference between these optimization methods is depending on
the way to handle Hessian operator. The consideration of Hessian oper-
ator can improve the convergence rate of optimization process and cor-
rect the wave propagation effects related to double scattering (Pratt
et al., 1998). The inverse Hessian operator is approximated in quasi-
Newton method (Byrd et al., 1995), while the approximation may be in-
accurate when multiple scattering cannot be neglected. Truncated
Newton method can better account for the effects of Hessian operator.
In the truncated Newton method, the approximate resolution of
Newton equation is used to be a perturbation model in the updating
process and solved by a conjugate gradient solver in the inner-loop of
truncated Newton method (Nash, 2000; Nocedal and Wright, 2006).
The computation of Hessian operator is replaced by the computation
of Hessian-vector product which can be efficiently implemented
through the second-order adjoint-state method (Wang et al., 1992;
Fichtner and Trampert, 2011) or finite-difference method (Nash,
2000; Nocedal and Wright, 2006). Truncated Newton method has
been used in the seismic FWI for the quantitative imaging of complex
subsurface structures (Métivier et al., 2013, 2014). Pinard et al. (2015)
investigated the potential of truncated Newton method in GPR FWI for
estimation of permittivity and conductivity.

In this paper, I present a cross-gradient based GPR FWI to jointly in-
vert permittivity and conductivity with structural constraint. The per-
mittivity and conductivity are alternatively inverted at each iteration.
The parameter models are constrained by the structure of each other
through a weighted cross gradient term and updated with several fre-
quencies in the frequency domain. The joint inversion procedure is
based on the frame of truncated Newton method, which can consider
the effects of Hessian operator in the optimization process. This joint in-
version procedure will be tested by three synthetic examples. Then, the
convergence behavior, values of cross-gradient term, and rms error of
individual and joint inversion results will be discussed in the following
section.

2. Methodology
2.1. Forward problem in the frequency domain

Restricting the Maxwell's equations to a 2D geometry results in two
decoupled systems: the transverse electric mode (TE) and the trans-
verse magnetic mode (TM). In the following, TE mode is utilized. Vibrat-
ing in the (XOZ) plane, for an electric dipole source oriented along the
y-axis, leading to following scalar wave equations

V2E(x,z, ) + K2E(x,z, 0) = —S(®), 1)

where E is the electric field intensity (in V m™1), K = 0?ue — iouo, u
is the magnetic permeability (in H m™"), € is the dielectric permittivity
(in Fm™1), ois the electric conductivity (in S m™1!), @ = 2nfis the an-
gular frequency (in rad s='), fis the frequency component (in Hz),
and S is the electric source waveform in the frequency domain.

After spatial discretization with the 9-point frequency domain finite
difference method (Jo et al., 1996), Eq. (1) can be written in a matrix
form (Pratt and Worthington, 1990)

B(e,0,0)u = s(w), (2)

where B is the complex-valued impedance matrix for the electromag-
netic wavefield, u is the complex-valued electrical field, and s is the elec-
tric source term.

Eq. (2) can be solved by direct matrix factorization method such as
lower-upper (LU) triangular decomposition (Golub and Loan, 1996).
Perfectly matched layers (PML) are used to absorb the waves at the
boundary of the computational domain (Bérenger, 1994).

2.2. Joint inverse problem

Define a joint objective function including both the individual objec-
tive function of GPR FWI and the cross-gradient term between permit-
tivity and conductivity, such that

P = cbl + aq)cros& (3)

where & is the individual objective function for GPR FWI, defined as
1 2
(I)] (850-7 w) :§‘|d_u(87o-~w)“ ) (4)

where d is the observed GPR data, u is the simulated GPR data in the for-
ward problem, o = \ ;21¢0%)_is 3 normalizing factor, N is a weighting

Deross (£0.00)
factor ranging from [0, 1], &g and 0y are initial models of permittivity and
conductivity for current frequency component, d,ss is a cross-gradient
term that coupling permittivity and conductivity with cross-gradient
function (Gallardo and Meju, 2003, 2004), defined as

Deross = %(Vs x Vo) (Ve x Vo), (5)

where T denotes transpose operator.

Then, alternately update permittivity and conductivity at each itera-
tion (Ernst et al., 2007b). The updating process for these two parameters
is similar. Therefore, I use a model, m, of dimension M to represents the
permittivity model or the conductivity model that being updated in the
following expressions.

The parameter model is updated through an iterative process, such
that

My = My + Y Amy, (6)

where Am denotes the perturbation model, and -y denotes the scale
length.

Within the framework of Newton algorithm, the perturbation model
satisfy the equation defined as

RN ad
om2 my = _a—mk7 (7)

where aa;“kl’z =H(my) + a%ﬁgﬁ, and J& = Vb, (my) + a%‘% V&, and H
denote the gradient and Hessian matrix of the individual objective func-
tion for GPR FWI.

The computation of V&, can be performed efficiently through the
first-order adjoint-state method (Plessix, 2006; Virieux and Operto,

2009; Lavoue et al., 2014), such that

V(I—)] (m’ ) — R |:uT< 0B )TB1Ad*:| (8)
¢ amk ’

where Ad = d — u, the diffraction matrixi‘;’—r‘f1 (or sensitivity kernel) char-

acterizes the sensitivity to the parameter m, that refers either to the per-

mittivity or conductivity, )R denotes the real part operator, and = denotes

complex conjugate operator.

The computation of Hessian operator, H, is a time-consuming pro-
cess that needs to compute M forward problems at least (Pratt, 1990),
therefore it is sensible to avoid directly constructing the Hessian opera-
tor, which leading to the consideration of truncated Newton method.

2.3. Truncated Newton method
2.3.1. The flowchart of truncated Newton method

Truncated Newton method is a two-layer algorithm that di-
vided into an outer-loop and an inner-loop. Parameter model is
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