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Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and
economic consequences raised from the inability to locate buriedundergroundutilities (such aspipes and cables)
by developing amulti-sensormobile device. The aim ofMTU device is to locate different types of buried assets in
real time with the use of automated data processing techniques and statutory records. The statutory records,
even though typically being inaccurate and incomplete, provide useful prior information on what is buried
under the ground and where. However, the integration of information from multiple sensors (raw data) with
these qualitative maps and their visualization is challenging and requires the implementation of robust machine
learning/data fusion approaches. An approach for automated creation of revisedmapswas developed as a Bayes-
ian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available
statutory records. The combination of statutory records with the hypotheses from sensors was for initial estima-
tion of what might be found underground and roughly where. The maps were (re)constructed using automated
image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-
manhole connections. Themodel consisting of image segmentation algorithm and various Bayesian classification
techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance
on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing re-
fined 2D/3D maps.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

The costs associated with street works in the UK is of critical consid-
eration due to the vast majority of utilities buried underneath the roads
and their repair/(re)installation (£7b annual) (Mcmahon et al., 2005).
The types of utilities buried under the ground are diverse and their
amount is notoriously large which makes excavation a challenging
task in order to upgrade these underground networks. In addition, the
statutory records of underground networks are typically incomplete
and inaccurate particularly for old street works (Burtwell and E. A.,
2004). An important undertaking is to develop schemes to detect
what is buried underground that could be associated to their records
and could become cost savior. A multi-sensor mobile laboratory MTU

(Underworld, 2011) was developed which consists of multiple sensors
capable of deploying several approaches to detect different types of bur-
ied infrastructure. The MTU device, was designed to assess the feasibil-
ity of a range of potential technologies that can be combined into a
single device to accurately locate buried pipes and cables. The potential
technologies included ground penetrating radar (GPR), low-frequency
quasi-static electromagnetic fields (LFEM), passive magnetic fields
(PMF) and low frequency vibro-acoustics (VA) and significant advances
have already been made (Royal et al., 2011; Royal Acd et al., 2010).

The location estimation approaches combined by MTU provide sig-
nificant advantages over other commercially available techniques
(Ashdown, n.d.) for detecting wide variety of utilities and control trials
were taken for test commercial sites. As a result, excavations necessary
formaintenance and repair can be largely reduced using such device. An
important undertaking is to use heterogeneous information from these
sensors and build refinedmaps of buried utilities in real time. However,
due to the heterogeneity in features of utilities and ground properties, it
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is challenging to develop a general technique that could assess hetero-
geneous information and handle the uncertainties associated to this
task. The integration of information obtained from multiple sensors on
MTU is of critical importance in order to make sense of the data before
providing a precise information on a site. The knowledge obtained
from different sensors presents itself non-symbolically i.e. the delivered
data is essentially an image representing what the sensor “sees” under-
ground. In contrast, utility records are almost universally represented
symbolically i.e. they are stored in a spatial database as records with a
vectorized representation of their spatial position, along with attribute
information (such as material, diameter). It is therefore challenging to
provide a useful and accurate representation of the data acquired from
a variety of sensors. Therefore, a data fusion approach consisting of au-
tomated techniques for data extraction and integration was imperative.

The map (re)construction model developed in this work was an im-
provement over (Chen and Cohn, 2011) which was initially designed
only for 2D construction of themap assuming that it consists of only lin-
ear segments. In addition, the data preprocessing for hypotheses extrac-
tion in (Chen and Cohn, 2011) was not combined as a complete model
and it was assumed that the hypotheses were extracted from GPR im-
ages using an iterative clustering/classification techniques prior to
data fusion tasks. Simple clustering/classification algorithms for hy-
potheses extraction such as k-means or Dbscanwere restricted in sever-
al ways for asset classification problem when developing real time
maps. For example, traditional k-means clustering algorithm creates
the clusters based on Euclidean distance of each data point to the cen-
troids (initially selected randomly). Also, the number of clusters to be
created is known in k-means algorithm. Depending on statutory records
to identify the number of segments was not reliable as, even providing
valuable information, they are inaccurate and may contain incomplete
information. Dbscan (Sander et al., 1998) also separates the clusters
based on Euclidean distance without providing the desired number of
clusters to be generated as prior. However, Dbscan requires radius in
order to differentiate the clusters that is used as a criterion for decision
making on number of clusters. The Euclidean distance between param-
eters is important in both approaches which is helpful in situations
where clustering is only distance based.

Bayesian data fusion models have been utilized for numerous appli-
cations and there is a large body of literature proposing Bayesianmodel-
ing for data fusion and uncertainty management, thus, providing
motivation for the work proposed in this study. To date, Bayesian
modeling has been successfully implemented in similar applications,
such as seismic/Magnetotelluric inversion (Dettmer et al., 2014; Guo
et al., 2011), water distribution management, modeling for rock-
physics analysis, gas and buried near-surface utility mapping (Ristić
et al., 2017; Ji et al., 2016; Wang and Lu, 2016; Ren et al., 2017;
Aleardi et al., 2017; Fernández-Martínez et al., 2013). Among several
impactful studies using Bayesian modeling, the approach of combining
multiple data sources and Bayesian data fusion for bedrock tracking
has been of significant interest such as (Fiannacca et al., 2017;
Christensen et al., 2015; Oldenborger et al., 2016). These studies pro-
posed automated tracking of bedrock depth and orientation by combin-
ing data from different inversion models, borehole data (Christensen
et al., 2015), and the utilization of time-domain electromagnetic data
(Oldenborger et al., 2016) to systematically handle uncertainties in
data of heterogeneous nature and reconstruct estimated maps of bed-
rocks. An application of Bayesian data fusion approach for theprediction
of water pipe failures was developed by (Oldenborger et al., 2016) with
the capability to be integrated with the geographical information sys-
tem of water resources and automatically predicting pipes of potential
failures. Another application of neural networks and pattern recognition
was developed utilizing only ground penetrating radar (GPR) data (im-
ages) to train the model on hyperbolic features (of buried objects) and
predict the locations and depths of buried solid objects followed by au-
tomatic construction of the maps of underground solid objects (pipes
and cables) (Ristić et al., 2017; Al-Nuaimy et al., 2000). It is noted that,

in addition to the inclusion of GPR image analysis as proposed by (Al-
Nuaimy et al., 2000), the work proposed in this paper provides wider
applicability due to the inclusion of multiple sensors of the MTU device
and the application of Bayesian models being capable of incorporating
incremental learning (unlike neural networks) upon the acquirement
of new knowledge.

In other similar works, Neira (Neira and Tardos, 2001) developed a
data association model for addressing the problem of robust data asso-
ciation for simultaneous vehicle localization and map building which
was an improvement over gated nearest neighbor (NN) (Bar-Shalom,
1987) for tracking problems that successfully rejects spuriousmatching
andprovides optimal solutions in terms of pairs ofmatching in cluttered
environments. The correlation betweenmeasurement prediction errors
in 2D space in cluttered environment provides robust data association
with an efficient traversal of the solution space. However, the direction-
al errors (linearity) causedmismatching of the segmentswithmanholes
using the hypotheses extracted from the sensors. Abhir and Roland
(Bhalerao andWilson, 2001) also used aMulti-resolution Fourier Trans-
form (MFT) for capturing sufficient shape and orientation of objects
within a given image. The use of statistical analysis and camera projec-
tions to estimate the location/orientations of line segments in 3D image
was also implemented for similar linear segment construction problems
(Dong-Min and Dong-Chul, 2009; Chen and Wang, 2010). However,
these approaches are only limited to an image of objects and segments
which is used to reconstruct a 3D image. MTU mapping, on the other
hand, is multi-source data fusion approach to integrate information
from multiple sources and produce most probable maps utilizing ad-
vanced machine learning/data mining techniques. For linear segment
fitting, significant amount of literature report the use of different regres-
sion models including EM algorithm that can efficiently fit at higher ac-
curacy levels (Ward et al., 2009; Ester et al., 1996; Sanquer et al., 2011;
Delicado and Smrekar, 2007; Werman and Keren, 1999; Friedman and
Popescu, 2004). The classification of data samples based on its source
as distinguished by MTU sensors is, however, lacking in these ap-
proaches as these algorithms were developed for regression scenarios.
In addition, the connection establishment (manhole-segment) was
not considered as an underlying issue as only the general regression
was covered.

The Bayesian mapping model is capable of using automated tech-
niques for hypotheses extraction, classification, segment recognition
and connection establishment with the associated manholes. We as-
sociate a probability distribution with every such hypothesis
reflecting possible errors in the measurements (uncertainty due to
the fusion of data from multiple sources) and hypothesis extraction
process. These geographical positions (x, y) and depths (z) were
used as input to the next stage of the mapping system. A variety of
Artificial Intelligence (AI) techniques and algorithms were imple-
mented such as Bayesian Data Fusion (BDF), image segmentation, or-
thogonal distance hyperbolic fitting, and weighted variation. The
algorithms for automated data processing and map (re)construction
were developed for real time operative capability of MTU device. A
complete use case can be tested using real time mapping model
where hypotheses extraction techniques were combined with itera-
tive connection establishment and visualization techniques. Several
simulated as well as real sites were tested, and it was demonstrated
that the model is robust in various conditions where statutory re-
cords were unavailable, and the sensor readings were sparse. The
segments were recognized and noise was removed successfully in
various situations for mapping the utilities demonstrating the ability
of model to work in real time complex situations.

2. Materials and methods

Themodel for Bayesianmapping followed theworkflow depicted in
Fig. 1. The sequential steps inmodel workflowwere as follows; (1) data
preprocessing, (2) segment recognition, and (3) segment-manhole
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