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Land seismic data generally have time-static issues due to irregular topography and weathered layers at shallow
depths. Unless the time static is handled appropriately, interpretation of the subsurface structures can be easily
distorted. Therefore, static corrections are commonly applied to land seismic data. The near-surface velocity,
which is required for static corrections, can be inferred from first-arrival traveltime tomography, which must
consider the irregular topography, as the land seismic data are generally obtained in irregular topography.
This paper proposes a refraction traveltime tomography technique that is applicable to an irregular topographic
model. This technique uses unstructured meshes to express an irregular topography, and traveltimes calculated
from the frequency-domain damped wavefields using the finite element method. The diagonal elements of the
approximate Hessian matrix were adopted for preconditioning, and the principle of reciprocity was introduced
to efficiently calculate the Fréchet derivative. We also included regularization to resolve the ill-posed inverse
problem, and used the nonlinear conjugate gradient method to solve the inverse problem.
As the damped wavefields were used, there were no issues associated with artificial reflections caused by un-
structured meshes. In addition, the shadow zone problem could be circumvented because this method is based
on the exact wave equation, which does not require a high-frequency assumption. Furthermore, the proposed
methodwas both robust to an initial velocitymodel and efficient compared to full wavefield inversions. Through
synthetic and field data examples, ourmethodwas shown to successfully reconstruct shallow velocity structures.
To verify our method, static corrections were roughly applied to the field data using the estimated near-surface
velocity. By comparing common shot gathers and stack sections with and without static corrections, we con-
firmed that the proposed tomography algorithm can be used to correct the statics of land seismic data.
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1. Introduction

Land seismic data are strongly influenced by weathering layers and
irregular topography, resulting in time-statics, which distort the re-
corded reflection signals over time anddegrade event continuity; there-
fore, land seismic data require static correction, which helps in accurate
interpretation of subsurface structure (Cox, 1999; Yilmaz, 2001). Gener-
ally, static correction requires information of near-surface velocity
structures. In the case of simple media, traditional approaches, such as
the slope/intercept method (Knox, 1967) and/or delay-time method
(Barry, 1967), can be utilized. However, in the case of complex media,
more sophisticated techniques are needed, such as refraction traveltime
tomography (Chang et al., 2002).

Refraction traveltime tomography is an efficient and robust optimi-
zation approach that infers shallow subsurface velocities by fitting the
modeled first-arrival traveltimes to the observed values. Full waveform
inversion (FWI) is a similar technique for estimating subsurface

velocities. However, unlike FWI, which uses both the amplitudes and
traveltimes of the seismic data, refraction traveltime tomography em-
ploys the first-arrival traveltimes. Therefore, refraction traveltime to-
mography is less affected by noise in the seismic data and is more
robust than FWI (Zelt and Chen, 2016). Refraction traveltime tomogra-
phy is also a robust inversion algorithm in terms of the local minima
problem even when using an initial velocity model that is far from the
true model (Zhou et al., 1995). Hence, the inverted velocity model ob-
tained from refraction traveltime tomography can be used as an initial
velocity model for FWI, which suffers from cycle-skipping due to the
absence of low frequency components (Alkhalifah and Choi, 2014).

Refraction traveltime tomography methods are generally catego-
rized into ray-tracing, wavepath, Fresnel volume, and wave equation-
based tomography (Zhang et al., 2014; Pyun et al., 2005). Ray-based to-
mography has been widely used because it is an efficient method.
Consequently, a variety of ray-based tomography methods have been
proposed (Hampson and Russell, 1984; Schneider and Kuo, 1985;
Docherty, 1992; White, 1989; Zhu and McMechan, 1989; Stefani,
1995). However, ray-based tomography easily fails because ray-
tracing assumes a high-frequency limit (Luo and Schuster, 1991). To
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solve the problem of high-frequency approximation, a variety of
traveltime tomography methods that incorporate the band-limited na-
ture of seismic data were introduced (Vasco et al., 1995). One such
method is wavepath tomography, which calculates the Fréchet deriva-
tive based on the Born approximation (Vasco and Majer, 1993), and
another is Fresnel volume tomography, which uses paraxial ray approx-
imation (Červený and Soares, 1992). In addition to these two methods,
wave equation-based tomography was introduced to resolve the prob-
lems associated with ray-tracing methods (Luo and Schuster, 1991). As
the wave equation-based method does not suffer from the high-
frequency assumption, it can handle high-velocity contrast models
and avoid the shadow zone problem. These benefits have prompted
the development of other variations of wave equation-based tomogra-
phy. For example, Luo et al. (2016) suggested a full traveltime inversion
method, which uses a similar algorithm to FWI, to estimate a kinemati-
cally accurate velocity model from traveltime information.

Here,we introduce awave equation-based tomographymethod that
can be applied to irregular topographic models. To deal with the irregu-
lar topography, thefinite elementmethod (FEM) ismore appropriate to
use than the finite differencemethod (FDM). Therefore, we adopted the
wave equation-based tomography technique suggested by Pyun et al.
(2005). This technique calculates the traveltimes and Fréchet deriva-
tives frommonochromatic dampedwavefields using the FEM in the fre-
quency domain. They adopted the principle of reciprocity between the
sources and receivers to efficiently calculate the sensitivity (Shin et al.,
2001).

Triangularmeshes are generated using themesh generator designed
by Shewchuk (2002) to construct elements, and then the frequency-
domain wave equation is solved using the FEM. From the modeled
wavefields, the first-arrival traveltimes are calculated and used to per-
form refraction traveltime tomography. To check the accuracy of the
proposed algorithms, the results of traveltime calculations were com-
pared with those from a fast-marching eikonal solver and analytical so-
lution. Our tomographymethod was also compared with the algorithm
of Pyun et al. (2005). The proposed tomography method was verified
through both synthetic and field data examples with irregular topogra-
phy. Especially, for the field data example, static corrections were addi-
tionally performed to illustrate the reliability of our algorithm.

2. Traveltime calculation using the frequency-domain wave
equation

2.1. Solutions to the wave equation using the FEM in the frequency domain

The wave equation must first be solved to calculate the wave
equation-based traveltimes (Shin et al., 2002; Son et al., 2016). To ob-
tain numerical solutions for the wave equation, the FDM and/or FEM
are commonly used. However, the FDM is unsuitable for an irregular to-
pographic model. Therefore, the FEMwith unstructuredmesh was cho-
sen to represent an irregular topography. The wave equation in the
frequency domain using the FEM is given as follows (Marfurt, 1984):

S~u ¼ f; ð1Þ

with

S ¼ K−ω2M; ð2Þ

where K is the stiffness matrix, M is the mass matrix, ~u is the Fourier
transformedwavefield vector, f is the source vector, andω is the real an-
gular frequency.

We used the triangular mesh generator designed by Shewchuk
(2002), which is based on the Delaunay triangulation theory
(Delaunay, 1934). To construct the irregular surface model, it is impor-
tant to determine the surface elevation of the target area. The surface el-
evation can be extracted either from the trace header of the SEGY file or

from additional measurements. Once the elevation is obtained, triangu-
lar elements are generated based on the user-defined reference grid
spacing and the extracted elevation. The reference grid spacing is defined
as the distance between adjacent nodal points at boundaries of the sub-
surface model. In this study, the unstructured mesh is generated with
some constraints of minimum internal angle andmaximum area of a tri-
angle.We assigned a value of 30° for theminimum internal angle and the
maximum area was set as half of the reference grid spacing squared.

With regard to the optimal grid spacing, the dispersion error is qual-
itatively considered. Care is required, as the dispersion error is related to
the accuracy of calculated traveltimes (Shin et al., 2002), particularly
when using the unstructuredmesh. If a regularmeshwith triangular el-
ements is employed, dispersion error can be analyzed quantitatively.
For examples, Liu et al. (2012) explained the dispersive behavior of
the spectral element method using ‘X’ type triangular mesh. Mazzieri
and Rapetti (2012) also described dispersion and dissipation errors
within triangular elements divided from square elements. However,
dispersion analysis for an unstructured mesh is generally impossible
(Shao-Lin et al., 2014). In this study, therefore, the reference grid spac-
ing is used to control the dispersion error. The reference grid spacing
is determined by the relationship between grid spacing and optimum
angular frequency, as reported by Shin et al. (2002).

2.2. Traveltime calculation using a damped wavefield

Asmentioned in the Introduction, variousmethods of traveltime cal-
culation based on the wave equation have been suggested. The method
proposed by Shin et al. (2003) was adopted in this paper. Although the
traveltime was actually calculated from the frequency-domain
wavefields, this paper starts with time-domain wavefields for ease of
understanding as follows:

u x; y; z; tð Þ ¼ ~A x; y; zð Þδ t−τ x; y; zð Þð Þ ð3Þ

where t and τ are the time variable and the first-arrival traveltime, re-
spectively, u indicates the time-domain wavefields, and δ represents

the Dirac delta function. ~Aðx; y; zÞ is the amplitude of the damped
wavefield with an attenuation coefficient ε, which can be written with
the original amplitude, A(x,y,z), and an exponential function as follows:

~A x; y; zð Þ ¼ A x; y; zð Þe−εt ; ð4Þ

where ε is calculated from the empirical relationship obtained by dis-
persion analysis (Shin et al., 2003). Through Eq. (4), the seismic signals
and multiples can be attenuated at a late time point, and a first-arrival
event is finally obtained (Fig. 1).

By taking the Fourier transform of Eq. (3), the Fourier transformed
wavefields are obtained as follows:

~u x; y; z;ωð Þ ¼ ~A x; y; zð Þe−iωτ x;y;z;ωð Þ; ð5Þ

where ω should be sufficiently small to avoid the wrap-around effect
(Shin et al., 2003). Although ω should vary depending on the traveling
distance and velocity, it is generally around 0.1–0.01. By taking the log-
arithm of Eq. (5), isolating the imaginary part, and dividing by ω, the
first-arrival traveltimes can be obtained as follows:

τ x; y; z;ωð Þ ¼ −
1
ω

Im ln ~u x; y; z;ωð Þf g½ �: ð6Þ

In practice, to compute the frequency-domain dampedwavefields u
ðx; y; z;ωÞ in Eq. (6), a complex angular frequencyω∗ is used as follows:

ω� ¼ ω þ iε: ð7Þ

As shown in Eq. (7), the complex angular frequency consists of a real
angular frequency and awrap-around suppression factor in the real and
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