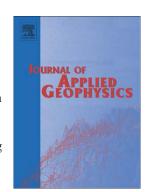
Accepted Manuscript

High-accuracy 2D and 3D Fourier forward modeling of gravity field based on the Gauss-FFT method

Guangdong Zhao, Bo Chen, Longwei Chen, Jianxin Liu, Zhengyong

Ren


PII: S0926-9851(17)30175-1

DOI: doi:10.1016/j.jappgeo.2018.01.002

Reference: APPGEO 3401

To appear in: Journal of Applied Geophysics

Received date: 17 February 2017 Revised date: 12 September 2017 Accepted date: 6 January 2018

Please cite this article as: Zhao, Guangdong, Chen, Bo, Chen, Longwei, Liu, Jianxin, Ren, Zhengyong, High-accuracy 2D and 3D Fourier forward modeling of gravity field based on the Gauss-FFT method, *Journal of Applied Geophysics* (2018), doi:10.1016/j.jappgeo.2018.01.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

High-accuracy 2D and 3D Fourier forward modeling of gravity field

based on the Gauss-FFT method

Guangdong Zhao^a, Bo Chen^{a,b,*}, Longwei Chen^c, Jianxin Liu^{a,d}, Zhengyong Ren^{a,d}

^a School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

^b Department of Earth Sciences, University of Toronto, Toronto M5S3B1, ON, Canada

^c School of Earth Sciences, Guilin University of Technology, Guilin 541006, China

d Key Laboratory of Metallogenic Prediction of Nonferrous Metals, Ministry of Education, Central South University,

Changsha 410083, China

Abstract This paper derives a set of analytical expressions through employing the 2D and 3D

Fourier transforms for calculating the gravity anomalies of a 3D density source approximated by

right rectangular prisms. To reduce the errors due to aliasing and imposed periodicity as well as

edge effects in the Fourier domain modeling, we use the Gauss-FFT technique in the standard

Fourier forward methods, and extend the Gauss-FFT algorithm from 2D to 3D. The capabilities of

these schemes are tested by simple synthetic models. The results show that the precision of the

Fourier forward methods using the Gauss-FFT with 4 Gauss-nodes (or more) is comparable to that

of the spatial modeling. In addition, the "ghost" source effects in the 3D Fourier forward gravity

fields due to imposed periodicity of the standard FFT algorithm are remarkably depressed by the

application of the Gauss-FFT algorithm. Furthermore, the execution times of the 4 nodes Gauss-

FFT modeling are reduced by two orders of magnitude compared with the spatial forward method.

It demonstrates that the improved Fourier methods are efficient and accurate forward modeling tools

for gravity anomalies.

Keywords Gravity field, Forward modeling, Spectral method, Gauss-FFT

* Corresponding author

Download English Version:

https://daneshyari.com/en/article/8915506

Download Persian Version:

https://daneshyari.com/article/8915506

<u>Daneshyari.com</u>