
Acoustic propagation operators for pressure waves on an arbitrarily
curved surface in a homogeneous medium

Yimin Sun a,⁎, Eric Verschuur b, Roald van Borselen a

a EXPEC ARC GRC Delft, Aramco Overseas Company BV, The Netherlands
b Delft University of Technology, The Netherlands

a b s t r a c ta r t i c l e i n f o

Article history:
Received 4 June 2017
Received in revised form 13 September 2017
Accepted 9 November 2017
Available online xxxx

The Rayleigh integral solution of the acoustic Helmholtz equation in a homogeneousmedium can only be applied
when the integral surface is a planar surface, while in reality almost all surfaces where pressure waves are mea-
sured exhibit some curvature. In this paper we derive a theoretically rigorous way of building propagation oper-
ators for pressure waves on an arbitrarily curved surface. Our theory is still based upon the Rayleigh integral, but
it resorts tomatrix inversion to overcome the limitations faced by the Rayleigh integral. Three examples are used
to demonstrate the correctness of our theory – propagation of pressure waves acquired on an arbitrarily curved
surface to a planar surface, on an arbitrarily curved surface to another arbitrarily curved surface, and on a spher-
ical cap to a planar surface, and results agreewell with the analytical solutions. The generalization of our method
for particle velocities and the calculation cost of our method are also discussed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The homogeneous acoustic wave equation,

∇2p ¼ 1
c2

∂2p
∂t2

; ð1Þ

where p represents the pressurewaves and c represents thewave prop-
agation velocity in themedium, is the foundation of almost all wavefield
extrapolation in geophysics. Although the homogeneous acoustic wave
equation appears simple, its solution is not trivial at all. Numerically sev-
eral methods exist to solve Eq. (1), for instance finite-difference time-
domain method (Alford et al., 1974) and finite element method
(Chopra et al., 1969), and the situation of complex topography can
also be addressedwith somemodifications to these numericalmethods,
such as finite-difference based on vacuum formulation (Pitarka and
Irikura, 1996), discontinuous-grid finite-difference method (Hayashi
et al., 2001), staggered discontinuous Galerkin method (Chung et al.,
2015) and grid-characteristic method (Shragge, 2014). Analytically, in
a homogeneous medium the solution of Eq. (1) is either the Kirchhoff
integral or the Rayleigh integral. Details of derivation of Kirchhoff inte-
gral and Rayleigh integral can be found in many classical text books,
e.g. Berkhout (1985, 1987) and Gisolf and Verschuur (2010), and in
Appendix A some key information about these integrals are also listed.
The Kirchhoff integral requires pressure waves, particle velocities,
Green's functions and the spatial derivatives of the Green's functions

to be known along a closed surface encircling the target point where
the wavefield reconstruction is to take place. However, in reality it is
not practical to have all these conditions satisfied simultaneously. In
contrast to the Kirchhoff integral, the Rayleigh II integral only requires
pressure waves and derivatives of Green's functions in order to recon-
struct the pressure wavefield at the target point, but this information
has to be available on a planar surface. In real data acquisition, due to
both economic and practical reasons, normally pressure waves can
only be acquired on a realistically curved surface, hence neither the
Kirchhoff integral nor the Rayleigh II integral can be correctly computed.
As a tradeoff solution, it is common practice to ignore the surface curva-
turewhen using the Rayleigh II integral (see e.g. Berkhout, 1985),which
is an approximation referred to as “the traditional solution” in this
paper. This compromise results in unwanted inaccuracies in wavefield
extrapolation as the Rayleigh theory is actually violated, so it is still an
open question how pressure wavefield extrapolation operators can be
accurately built on a curved surface.

2. Theory

The Rayleigh II integral (see e.g. Gisolf and Verschuur, 2010) reads as
follows:

P rAð Þ ¼ −2
Z

S0→∞
P∇G � ndS0 ð2Þ

where P represents pressure waves of a certain frequency, S0 is an infi-
nite planar integral surface, rA is the target location where the pressure
wavefield needs to be reconstructed, G is the Green's function from a
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certain point on the infinite planar integral surface to the target location
rA, and n is the unit normal vector at G's location on S0. Eq. (2) actually
carries three important messages regarding the pressure wavefield
extrapolation. Firstly, although the integral surface has to be a planar
surface, there is no limitation for the target surface. Secondly, the
Rayleigh II integral is capable of handling both forward and backward
wavefield extrapolation as long as the corresponding Green's functions
are provided. Thirdly, the pressure wavefield extrapolation process is a
linear system.

For the most general P-wave extrapolation situation, i.e. to propa-
gate pressurewaves acquired on an arbitrarily curved surface to another
curved surface, as shown in Fig. 1(a), we propose to carry it out in two
steps, as shown in Fig. 1(d). By introducing an intermediate planar sur-
face, the complete wave propagation process can now be divided into
pressure waves propagating from a curved surface to the intermediate
planar surface and then the pressure waves propagating from the inter-
mediate planar surface to the target curved surface. Since the second
step is exactly what is described by the Rayleigh II integral, only the
first step needs our attention. Knowing that wavefield extrapolation
via the Rayleigh II integral is a linear system, we assume that the prop-
agation of pressure waves from a curved surface to a planar surface is
also a linear system, and the corresponding propagation operator ma-
trix is denoted as B. As illustrated in Fig. 1(b) we assume that in the fre-
quency domain there exists a B such that pressure waves on the planar
surface,w, are related to pressurewaves on the curved surface, u, via the
equationw= Bu. Note thatw and u are vectors, and how 3Dwavefields
are packed into vectors will be explained later on. However, neither the
Kirchhoff theory nor the Rayleigh theory tells how to straightforwardly
build B, and hence it has to be calculated via a detour. The Rayleigh II in-
tegral actually tells that u andw can be related via another relationship

u= Aw asw is pressure waves measured on a planar surface while A is
the corresponding operator matrix for pressure waves as shown in
Fig. 1(c). If these two relationships are compared, i.e. w = Bu and u =
Aw, and if we further assume that data sampling on both surfaces is
the same, i.e. dim(u) = dim(w), it can then be easily realized that the
operator matrix B indeed exists in theory, and is given by

B ¼ A−1: ð3Þ

According to Eq. (3), to build the operator matrix B, we need to first
use the Rayleigh II integral to build its corresponding operator matrix A,
and then the inverse ofA gives theB that is needed. This implies that the
forward propagation matrix B needs the backward Rayleigh II integral
to build A, while the backward propagation matrix B needs the forward
Rayleigh II integral to build A. Moreover, evanescent waves should be
handled properly in order for correct physics to be reflected in matrix
B. In this paper, we demonstrate step by step how to build a 3D forward
propagation matrix B of pressure waves from an arbitrarily curved sur-
face to a planar surface, and the backward propagation matrix B can be
built by following exactly the same route.

We resort to 3D FK operator theory (see e.g. Berkhout, 1985, 1987
and Blacquiere, 1989) as the mathematical framework for us to build
A, and in the Appendix B more detailed information about this well-
established theory can be found. In the FK (wavenumber-frequency do-
main) theory, starting from a planar surface z = zl, the solution of the
acoustic Helmholtz equation can be written as

~P kx; ky; z;ω
� � ¼ exp −jkz z−zlj jð Þ~P kx; ky; zl;ω

� �
; ð4Þ

Fig. 1. (a) Propagation of pressurewaves from a curved surface to another curved surface. (b) Operator matrix B satisfyingw= Bu. (c) Operator matrix A satisfying u= Aw. Note herewe
already assume that the data sampling is the same on both surfaces. (d) Propagation after introducing an intermediate planar surface to divide the complete propagation process into two
phases, and the corresponding propagation matrices are B21 and A32.
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