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Different geophysical inversion strategies are utilized as a component of an interpretation process that tries
to separate geologic units based on the resistivity distribution. In the present study, we present the results of
separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished
using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within
the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain
a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data).
Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by
assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering
procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic
plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach
shows improvement on the conventional inversion approach to differentiate between different geologic units
if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was
performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case
study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic
units interpreted from the borehole information.
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1. Introduction

Electrical Resistivity Tomography (ERT) and plane-wave diffusive
electromagnetic techniques (i.e., direct current, very low frequency,
and magnetotelluric method) are among the popular methods in
geophysics to map both shallow (direct current, very low frequency,
radio magnetotelluric method) and deep resistivity features
(magnetotellurics) on a large scale. Inversion provides a mathematical
framework to obtain a reliable resistivity model of the earth's subsur-
face from these data sets. Though there are a finite number of data
sets, the resistivity distribution of the earth is continuous. Thus, there
are many subsurface resistivity models that can fit the observed data
equally well due to the non-uniqueness of the geophysical inverse
problem. Over the last 30 years, many resistivity inversion algorithms
have been developed to image complex geological structures with
different scales (e.g., Constable et al., 1987; Siripunvaraporn and
Egbert, 2000; Rodi and Mackie, 2001; Lee et al., 2009; Kamm and
Pedersen, 2014; Kelbert et al., 2014; Zhou et al., 2014; Cockett et al.,
2015; Singh and Sharma, 2015; Nittinger and Becken, 2016; Singh and
Sharma, 2016).The aforementioned inversion algorithms have their

own originality in terms of computation time and provide a smooth
resistivity model which fit the observed data to the desired degree.
However, in general, the boundaries between different geologic units
are not clear because of less contrast in the recovered resistivity
model. This makes the geologic interpretation based on subsurface re-
sistivity distribution difficult. To overcome this, Mehanee and Zhdanov
(2002) created blocky resistivity structure using magnetotelluric data.

To reduce the non-uniqueness in the resistivity distribution of sub-
surface, many researchers began dealing with joint inversion. Vozoff
and Jupp (1975) demonstrated the first result based on joint inversion
of magnetotelluric and direct current resistivity data. Joint inversion
algorithms with other geophysical methods were introduced to
further enhance the quality of the resistivity images (for e.g., Sasaki,
1989; Dobroka et al., 1991; Verma and Sharma, 1993; Meju, 1996;
Candansayar and Tezkan, 2008; Sharma and Verma, 2011). Moorkamp
et al. (2011) developed 3D joint inversion of gravity, magnetotelluric,
and seismic data over a marine salt dome. Constraining geophysical
inversion with additional independent information and joint inversion
of various geophysical data sets are an active area of research in the
geophysical community.

In general, we first acquired the resistivity model through inversion
and based on that resistivitymodel, classified distinct geologic units as a
post-inversion process. For example, Bedrosian et al. (2007) indepen-
dently obtained the resistivity model from magnetotelluric data and
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the velocity model from seismic data. Further, they identified the statis-
tical correlation between resistivity and seismic velocity in a joint
parameter space and drew a lithology-derived empirical relationship
between the resistivity and velocity models. Infante et al. (2010)
combined geospectral images and geophysical signatures after the
joint inversion of seismic and direct current resistivity data to obtain a
better boundary between two geologic units. Kalscheuer et al. (2013)
obtained a 2D resistivity model from joint inversion of radio-
magnetotelluric method / controlled source audio-magnetotelluric
method and direct current gradient resistivity data. Further, based on
the resistivity distribution, they interpreted structural boundaries of
marine clay, dry soil, quick clay, alum shale and limestone under
geotechnical constraints. Di Giuseppe et al. (2014) used the k-means
clustering technique as the post-inversion process after obtaining
the resistivity and P-wave velocity models from the independent
individual inversion. Further, they identified five clusters in the cross-
plot of resistivity and velocity section. After obtaining two distinct
local relationships between electrical resistivity and seismic velocities,
the hanging and footwall zones of the fault were identified.
Ward et al. (2014) used the fuzzy c means clustering technique as a
post-inversion process, which significantly improved the resistivity
image.

In most geologic scenarios, different geologic units often have a
distinct range of resistivity values (Reynolds, 1997). As a result, these
geologic units can be classified by incorporating inverted resistivity
values so that statistically similar resistivity values are grouped into
one unit or cluster. In this manner, geologic separation can be accom-
plished with the help of the clustering procedure of resistivity distribu-
tion. Similar to Ward et al. (2014), the present study used the fuzzy c
means clustering technique to differentiate between two geologic
units. An attemptwasmade to incorporate the fuzzy cmeans clustering
technique directly into the inversion framework to distinguish between
two geologic units. The algorithm has been utilized on three synthetic
data sets, viz., Very Low Frequency- Electromagnetic (VLF-EM), Very
Low Frequency-Resistivity (VLF-R), and magnetotelluric (MT) method.
The field Direct Current Resistivity (DCR) data showed the efficacy of
the present study to differentiate the subsurface geologic units.

2. Theoretical background

2.1. Inversion approach

To obtain the reliable resistivity model from the DCR/MT/VLF data
sets, we formulated our inverse problem using the Tikhonov objective
function (Tikhonov and Arsenin, 1977):

min
m

ϕ mð Þ ¼ Wd dobs−dpre
� ���� ���2 þ λ Wmmk k2; ð1Þ

s:t: mmin
i b mi b mmax

i for some or all i; ð2Þ

where,mi
min andmi

max are the lower and upper geological constrains for
the ith resistivity model parameter, ‖Wd(dobs − dpre)‖2 is a data misfit
term, and ‖Wmm‖2 is a model regularization term, and λ is a Lagrange
multiplier or regularization parameter and itwill try to balance between
the data misfit term and themodel regularization term. dobs is observed
data sets (DCR/MT/VLF) and dpre is a predicted or computed data. Wd

and Wm are the data weighting matrix and regularization matrix
respectively, and ‖‖2 is the squared L2 norm. The Lagrange multiplier
λ is the very important parameter and controls the trade-off between
model regularization and data misfit function. Constable et al. (1987)
suggested a line search method with iteration whereas Loke and
Barker (1996) started with the higher value which further decreases
at subsequent iterations. Yi et al. (2003) used a spatially variable
regularization parameter and calculated it using the spread functions
and model parameter resolution matrix. Günther et al. (2006) chose

the regularization term using L-curve criteria. In the present study, we
considered a higher value of the regularization parameter with the
damping factor of 0.5, which was reduced to a minimum of 0.01 after
successive iteration for the ERT data and same strategy was used for
the plane wave electromagnetic data.

Theminimization of the objective function shown in Eq. (1) at the
(i + 1)th iteration in a Gauss-Newton strategy requires the solution for
the model upgrade (Farquharson and Oldenburg, 2004):

STWT
dWdS þ λWT

mWm

� �
Δmiþ1 ¼ STWT

dWd dobs−di
� �

−λWT
mWmmi;

ð3Þ

where, S is the Jacobian matrix and Δm is model perturbation vector.
Since model parameters are transformed into logarithmic scale they
are updated using the following expression:

miþ1 ¼ mi exp Δmiþ1
� �

: ð4Þ

2.2. Fuzzy c means clustering

Here, the role of the clustering procedure is to divide each of the
resistivity blocks into groups of similar geologic units. There are
numerous clustering techniques available in the literature. Of these,
Fuzzy C-Means (FCM) is a strategy for clustering which permits one
piece of data to belong to two or more groups (Hoppner et al., 1999;
Hathaway and Bezdek, 2001).

Let m = [m1,m2,…,mM]T denote the M number of resistivity blocks
to be partitioned into C number of geologic units (number of cluster
centers). Assuming that we know the number of geologic units in
the study area (i.e., the number of groups/clusters, C), Iterative minimi-
zation of a particular objective function could be performed. Further,
we obtained the optimum value of the cluster centers and their
respective membership values (p). The FCM clustering could be
solved by minimizing the following objective function (e.g., Bezdek,
1981):

ϕc pjk;uk

� �
¼
XM
j¼1

XC
k¼1

pqjk mj−uk

�� ��2; ð5Þ

Subject to 0 ≤ pjk ≤ 1,

XC
k¼1

pjk ¼ 1 ∀ j ∈ 1;2;…;Mf g; ð6Þ

where, C is the number of geologic units in the study area, M is the
number model parameters, and pjk indicates the degree of membership
of the model parameter mj to the kth cluster defined by its center uk.
Weighting exponent q is a fuzzification parameter, which is the degree
of overlap between the geologic units (clusters). As q approaches
infinity, the solution approaches its highest degree of fuzziness
(e.g., Bezdek, 1981). We chose q = 2 because it is acknowledged as a
decent decision of the fuzzification parameter by numerous scientists
(e.g., Hathaway and Bezdek, 2001). If we take the derivative of Eq. (5)
with respect to pjk by assuming cluster centers uk as a constant, and
setting it to zero and then obtain the update of membership values pjk
(Hathaway et al., 2000; Sun and Li, 2015):

pjk ¼
1

XC
i¼1

mj−uk

�� ��
mj−ui
�� ��

 ! 2
q−1

; ð7Þ

Similarly, the differentiation of Eq. (5) with respect to uk by
assuming membership values pjk as a constant, and setting it to zero
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