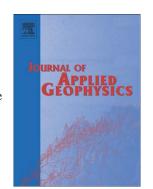
Accepted Manuscript

Robust noise attenuation based on nuclear norm minimization and a trace prediction strategy

Yatong Zhou, Shili Zhang


PII: S0926-9851(17)30403-2

DOI: doi: 10.1016/j.jappgeo.2017.09.005

Reference: APPGEO 3331

To appear in: Journal of Applied Geophysics

Received date: 24 April 2017 Revised date: 8 August 2017 Accepted date: 2 September 2017

Please cite this article as: Zhou, Yatong, Zhang, Shili, Robust noise attenuation based on nuclear norm minimization and a trace prediction strategy, *Journal of Applied Geophysics* (2017), doi: 10.1016/j.jappgeo.2017.09.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Robust noise attenuation based on nuclear norm minimization and a trace prediction strategy

Yatong Zhou and Shili Zhang

¹ School of Electronic and Information Engineering

Hebei University of Technology

Xiping Road No. 5340, Beichen District

Tianjin, China, 300401

zyt_htu@126.com

(September 9, 2017)

Running head: Robust noise attenuation based on NNM

ABSTRACT

Rejecting noise in seismic data while not affecting the amplitude of useful signals is a long standing problem in seismic data processing. Seismic noise attenuation can be formulated as a nuclear norm minimization (NNM) problem. To meet the assumption that seismic data should have low nuclear norm, we first map the seismic data into a low-rank matrix based on a trace prediction strategy. We provide detailed algorithm workflow and mathematical analysis of the trace prediction method. The seismic data after trace rearrangement is demonstrated to be locally low-rank. The NNM problem is then solved via the singular value thresholding (SVT) algorithm. The effectiveness of the proposed method is validated via both synthetic and field data examples. We also test the robustness of the proposed method with respect to random noise, spiky noise, and blending interference. Compared with the state-of-the-art predictive filtering method, median filtering method, singular spec-

Download English Version:

https://daneshyari.com/en/article/8915573

Download Persian Version:

https://daneshyari.com/article/8915573

<u>Daneshyari.com</u>