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In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude
Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework
uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Me-
tropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid sat-
urations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain
Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally de-
manding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach
is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic
reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic
joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle
only inversion, especially for the parameters in deep layers. The performance of the inversion approach for var-
ious levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels
up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost

linear scalability.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Successful marine gas reservoir characterization requires accurate
estimation of reservoir properties such as porosity and fluid/gas satura-
tions, and the quantification of errors/uncertainties in these estimates.
Controlled-Source Electromagnetic (CSEM) data are known to be sensi-
tive to the presence of hydrocarbons — as shown in Archie's law (Archie,
1942), the electrical resistivity of reservoir rocks is highly sensitive to
gas saturation through the link to water saturation. Such a dependence
of bulk resistivity on gas saturation makes it possible to discriminate be-
tween economic and non-economic gas saturations. However, the
CSEM data are insensitive to geological structural details, which makes
standalone CSEM inversion challenging to interpret. Seismic data, on
the other hand, provide detailed structural information and can help re-
solve rock properties such as porosity, but cannot distinguish fluid prop-
erties given the inadequate contrast in density and seismic velocities.
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Since seismic velocity and density have low sensitivity to variations in
gas saturation (Castagna and Backus, 1993; Debski and Tarantola,
1995; Plessix and Bork, 2000), both fluid and pressure changes have ap-
proximately the same degree of impact on the seismic Amplitude Ver-
sus Angle (AVA) data according to Gassmann's equations (Gassmann,
1951). The two types of data (seismic AVA and CSEM) can therefore
be used as supplementary information to each other to provide ade-
quate constraints on reservoir properties. There have been successful
applications of joint inversion of seismic AVA and CSEM data for charac-
terizing marine reservoirs (e.g., Aki and Richards, 1980; Chen et al.,
2007; Du and MacGregor, 2010; Fliedner et al.,, 2011; Hou et al., 2006;
Lang and Grana, 2015).

Although joint inversion of seismic AVA and CSEM data can provide
better estimates of gas saturation and porosity than inversion of individ-
ual data sets (Chen et al., 2004; Chen et al., 2007; Hou et al., 2006), the
integration of two types of data can be challenging due to the high di-
mensionality of the unknown parameter space. Consequently, parame-
ter estimates and their uncertainties may vary significantly given the
choice of inversion approaches (e.g., deterministic versus stochastic),
designs of objective and likelihood functions and the transformation
and weighting of observational data.
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In typical geophysical characterization, the existence of noise and
the inadequacy (e.g., spatial and temporal coverage and resolution) of
the data imply that the problem is ill constrained and therefore, geo-
physical characterization is a good target for statistical inference. Since
there is usually an infinite number of models that can fit the data, it is
useful to employ stochastic approaches (e.g., Bayesian), where un-
knowns are inferred in the form of a posterior probability density func-
tion (PDF), thus automatically quantifying the uncertainty in the
estimates of the unknowns. The estimation problem is posed as a statis-
tical inverse problem, which provides an expression for the posterior
density (alternatively, the joint PDF of the unknowns of interest). The
PDF is realized by drawing samples using a method such as Markov
chain Monte Carlo (MCMC). MCMC (Liang et al., 2011) methods de-
scribe a random walk in the parameter space. Each step in the walk is
evaluated by running a forward model to gauge the quality of a new pa-
rameter proposal (alternatively, a proposed step in the random walk).
Most proposed steps are rejected, making MCMC very expensive,
since a sufficient number of samples need to be taken to recover the
PDF. To reduce computational time, multi-chain (i.e., parallel) MCMC
methods have been developed. Our MCMC procedure starts with 4
chains running DREAM (DiffeRential Evolution Adaptive Metropolis;
Vrugt et al., 2009). When a sufficient number of samples have been col-
lected by DREAM to make a useful proposal distribution, the MCMC
method transitions to a parallel (4 chains) AM (Adaptive Metropolis;
Haario et al., 2006), implemented in a manner identical to Solonen's
method (Solonen et al,, 2012).

In our paper, we considered a five-layer reservoir model, similar to
the synthetic model setup in (Hou et al., 2006), to demonstrate the ac-
curacy and efficiency of the newly developed multi-chain MCMC-
Bayesian approach. The unknowns include gas saturation and porosity
in each layer in the reservoir. We also investigated the performance of
the proposed approach under different levels of noise in both seismic
AVA and CSEM observational data, and evaluated the efficiency and
scalability of the multi-chain MCMC.

The paper is organized as follows. Section 2 introduces the method-
ology, followed by the results and discussions in Section 3. Concluding
remarks are presented in Section 4.

2. Methodology
2.1. Seismic AVA and CSEM modeling

In seismic modeling, the reservoir variables of interest are porosity
(@), water (Sw) and gas saturation (Sg) within the reservoir. The
Zoeppritz equation (Aki and Richards, 1980) was used to model the
angle-dependent reflectivity, which is convolved with the compression-
al wave reflection coefficient to form the calculated seismic AVA re-
sponses (Shuey, 1985). p, V, and V (density, compressional and shear
wave velocities) of the reservoir are calculated from water and gas sat-
uration and porosity using a rock-physics model as described by
Dvorkin and Nur (1996) and Hoversten et al. (2003). The model param-
eters are adopted from Chen et al. (2007). The bulk and shear moduli
and density are assumed known, and in practice can be obtained from
nearby well logs or can be included in the unknown parameters to be
inverted.

CSEM data are the amplitude and phases of the recorded electrical
field as a function of frequency and transmitter-receiver offsets. This
data is gathered at 21 receivers located on the seafloor. CSEM data are
the responses to the electrical conductivity of the entire half-space,
which includes the seawater (o), the overburden (o,) above the reser-
voir, the reservoir and the bedrock beneath the reservoir. For the EM
forward model, we applied an integral-equation solution for the electric
field from an electric-dipole source within a layered medium (Ward and
Hohmann, 1988). The sensitivity of electrical resistivity of reservoir
rocks linked to water saturation can be modeled by Archie's law
(Archie, 1942).

We assumed that the rock-physics models and Archie's law
(which relate seismic velocity density and electrical conductivity)
are given and exact. The pore pressure was also assumed to be con-
stant. We also assume the effects of multiple reflections and wave-
form spreading can be neglected in seismic AVA data. The rock-
physics model and Archie's law parameters used in our inversion
are listed in Table 1.

2.2. Bayesian framework

We first explain the basic formulation of a Bayesian inverse prob-
lem and then adapt it for our problem. Consider a model Y = M(6),
which is driven by parameters 0. Consider, too, that we have obser-
vations Y(°S) = {y{°")} j = 1... M, of Y. So Y(°*) is a vector of M ob-
servations. We seek to infer 6 from Y(°"®), We relate the model
predictions to the observations using an error model, in our case, a
Gaussian with zero mean
YOS — M(0) + €€ = {&}, & ~ N(0,0%). (1)

Here ¢; are the “errors” or the model-data mismatch. It is a composite
of the measurement error and, in real-data inversion, the structural
error. The structural error is the mismatch between observations and
model predictions due to “missing physics” i.e., model approximations.
Under this formulation, the likelihood of observing a single observation
yfob9), for a given value of 6, is
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where M/ (6) s the jth component of the model prediction. Consequent-
ly, the likelihood f(Y(°®®)|) of observing the data Y(° for any given
value of 6, is given by
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where ||-++||, is the L, norm. If one has two types of observations Y; >

and Y5, of lengths M; and M,, corresponding to two models driven

Table 1
The rock-physics model and Archie's law parameters used in the inversion.

Inversion domain (each layer) Inversion domain 50
thickness
Pore pressure (GPa) 19.03
Effective pressure (GPa) 5.84
Temperature (°C) 55

Reservoir (rock-physics model Grain shear pressure 40.3278

parameters) (GPa)

Grain Poisson ratio 0.05987
Grain density (kg/m>) 2759.64
critical porosity 0.37
Number of grain contacts  11.7766
Oil API gravity 59
Gas gravity 0.03625

Archie's law coefficients Archie's law constant 0.46426
Water saturation -
exponent 1.8646
Porosity exponent —

1.3855
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