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ARTICLE INFO ABSTRACT

The lack of signal to noise ratio increases the final errors of seismic interpretation. In the present study, we
apply a new non-local transform domain method called “3 Dimensional Block Matching (3DBM)” for seismic
random noise attenuation. Basically, 3DBM uses the similarities through the data for retrieving the ampli-
tude of signal in a specific point in the f-x domain, and because of this, it is able to preserve discontinuities
in the data such as fractures and faults. 3DBM considers each seismic profile as an image and thus it can be
applied to both pre-stack and post-stack seismic data. It uses the block matching clustering method to gather
similar blocks contained in 2D data into 3D groups in order to enhance the level of correlation in each 3D
array. By applying a 2D transform and 1D transform (instead of a 3D transform) on each array, we can effec-
tively attenuate the noise by shrinkage of the transform coefficients. The subsequent inverse 2D transform
and inverse 1D transform yield estimates of all matched blocks. Finally, the random noise attenuated data is
computed using the weighted average of all block estimates. We applied 3DBM on both synthetic and real
pre-stack and post-stack seismic data and compared it with a Curvelet transform based denoising method
which is one of the most powerful methods in this area. The results show that 3DBM method eventuates in
higher signal to noise ratio, lower execution time and higher visual quality.
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1. Introduction

Accurate images of subsurface structures are necessary in seis-
mic exploration of hydrocarbon reservoirs. These images are usually
corrupted/contaminated with both random and coherent noises. In
order to attenuate these noises, many denoising methods have been
proposed so far. In this study, we further propose a seismic random
noise attenuation method. Many methods in the frequency-space
(f-x) domain have been proposed for attenuation of random noises,
via employing the Fourier transform to extract a few dominant har-
monics by preserving a finite number of frequency or wavenumber
components in the frequency domain (Naghizadeh and Sacchi, 2012).
Canales (1984) introduced the f-x prediction technique. After that,
many f-x domain methods appeared for random noise attenuation
(BekaraandVanderBaan,2009; Chase, 1992; Chenand Ma, 2013; Gulu-
nay, 2000; Hao et al., 2011a; Liu et al., 2011, 2012; Naghizadeh and
Sacchi, 2011,2012; Oropeza and Sacchi, 2009; Sacchi and Kuehl, 2011;
Soubaras, 1994; Trickett, 2003, 2008; Trickett and Burroughs, 2009).
The fundamental of all f-x denoising methods is that the spatial signals
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at each single frequency are composed of a superposition of a limited
number of complex harmonics (Naghizadeh and Sacchi, 2012). The
main advantages of these filter domain approaches are their speed and
easier implementation. However, when the structure of subsurface
becomes complex or in the high-dip-angle events, the f-x methods
suffer from an error of high prediction because of large amount of dip
components to be predicted (Chen and Ma, 2013). Furthermore, the f-
x algorithms are not successful in processing of seismic data including
nonlinear events (Deng et al., 2010).

To compensate the limitations of the Fourier transform in dealing
with the time-frequency analysis in the non-stationary time series,
the concept of Short Time Fourier Transform (STFT) was developed
which has a fixed width of time window. In all of the STFT methods,
undesirable computational complexities arose when either narrow-
ing of the window is required for better localization or widening of
the window is required to obtain a more global picture (Miao and
Moon, 1994).

After that the Wavelet transform was introduced (Daubechies,
1988, 1990; Mallat, 1989; Rioul, 1991) which has the capability of
combining the features of both time and frequency information. A
further advantage of the Wavelet transform which distinguishes itself
from any STFT is its zoom-in and zoom-out capabilities. Unlike the
STFT in which the width of the window is fixed, the Wavelet trans-
form localizes signals in a variable window (Miao and Moon, 1994).
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Since the 1990s, Wavelet transform has been used often in speech
recognition, image processing and seismic data denoising because of
its nice localization characteristics (Zhenwu et al., 2009). For suppres-
sion of random noises, many Wavelet transform approaches have
been proposed (Chen et al., 2012; Wu et al., 2006; Zegadi and Zegadi,
2010; Zhang and Ulrych, 2003; Zhang et al., 2004). The Wavelet
transform is a multi-scale geometric analysis tool (Hao et al., 2011b)
and primarily suitable for isotropic singularities. Although it can be
applied to the time-frequency analysis of the signals, it has only
limited directions (Hao et al., 2011b) and fails to represent approxi-
mately those anisotropic singularities such as the boundary and linear
characteristics of seismic data, which are very common in practice.
It is the reason that some degree of fuzzy phenomenon inevitably
emerges when applying Wavelet transforms to fusion, compression,
or denoising of seismic signals (Wang et al., 2010). Also, the filters
used to implement the Wavelet transform overlap in the frequency
domain, which leads to internal aliasing (Foster et al., 1997).

For compensation of the Wavelet transform limitations, the
Curvelet transform was proposed by Candes and Donoho (1999). It
originated from the Ridgelet transform. After that the second gener-
ation of Curvelet transform was introduced by Candes et al. (2006)
which decreased the computation time. Finally, Candes et al. (2006)
proposed fast discrete Curvelet transform based on the second gen-
eration which is easier and faster than the former discrete method
and greatly decreases the redundancy of the traditional algorithm
(Hao et al., 2011b). Basically, the Curvelet transform makes a Wavelet
transform of the signal and decomposes it into a series of sub-band
signals with different scales; and then, performs a local Ridgelet
transform on every sub-band in which their sizes can differ from the
scale (Wang et al., 2010). Many researchers e.g. Dong et al. (2013),
Hao et al. (2011b), Kumar and Herrmann (2009), Neelamani et al.
(2008), Starck et al. (2002), Wang et al. (2010, 2013), and Zhenwu
et al. (2009) used the Curvelet transform for seismic denoising. Nee-
lamani et al. (2008) showed that for random noise attenuation of
seismic data, Curvelet transform is better than Wavelet transform.
However, the harmonic nature of the Curvelet elements makes it dif-
ficult to recover the sharp discontinuities like faults and results in
fine scale artifacts around them (Lari and Gholami, 2014).

There are also other methods for suppression of random noises
in seismic data, such as using band-pass, f-k, and kx-ky filtering
(Yilmaz, 2001) which mute undesired portion of the data in the
Fourier domain cost-effectively but lead to signal distortion and spa-
tial correlation of background noise, least squares (Deng et al., 2010;
Tyapkin et al., 2009) which are very effective tools for smoothing
and interpolation of data in three dimensions (Milanfar, 2013), how-
ever, they have high cost and highly dependent to the accuracy of
background model information, inversion methods like total varia-
tions (Lari and Gholami, 2012) which have higher edge-preserving
characteristics, lower ability in retrieving smooth regions and output
results with lower signal to noise ratio with respect to the Curvelet
methods (Lari and Gholami, 2014), and non-local means (Bonar and
M. Sacchi, 2012; Maraschini and Turton, 2013) which their basic
idea is to denoise each sample or pixel within an image by utilizing
weighted average of other similar samples or pixels. The compu-
tational time and sensitivity to accurate filter parameters of the
non-local means methods need to be reduced which restrict their
applications.

In this paper, we introduce a non-local transform-domain image
denoising strategy called “3D Block Matching (3DBM)” based on an
enhanced sparse representation in transform domain. The original
algorithm was proposed in 2007 by Dabov et al. as a noise attenu-
ation tool for digital images (Dabov et al., 2007). We use the 3DBM
algorithm for attenuating of seismic random noises. It is important
to note that there is no difference between our algorithm and that
of Dabov et al. (2007) except the application in seismic field and
comparison with Curvelet transform based denoising method.

The basic idea behind this algorithm is the presence of some
degree of redundancy within the data due to the repetition of geo-
logical structures such as the curvature of an anticline and the
lineation of a fault. Here in this method, we consider a noisy seis-
mic cross section like an image. Then the image is divided into many
blocks with the same sizes (i.e. square blocks with specific num-
ber of samples). The enhancement of the sparsity is achieved by
grouping similar blocks into 3D data arrays which we call “groups”.
After 3D transforming of each group to another domain, the ran-
dom noises will be significantly separated from the main signal due
to the similarity between the signals contained in grouped blocks.
Then, after the shrinkage of the transform spectrum, a 3D estimate
of the group which consists of an array of jointly filtered 2D blocks
will be obtained. The filtered data is transferred to the time domain
using an inverse 3D transform. Then each block returns to its main
position. Although the basic idea is similar to non-local means meth-
ods, here in this method we enhance the random noise attenuation
proficiency using grouping similar data and transferring data to a
sparse domain. This procedure reveals even the finest details shared
by grouped blocks and at the same time it preserves the essential
unique features of each individual block. We show that the proposed
method outperforms the state-of-the-art Curvelet transform based
denoising method (CTD) both visually and in the sense of signal to
noise ratio (SNR).

In the next parts, we will first explain thoroughly about the 3DBM
method, then compare it with conventional CTD method in several
synthetic and real examples.

2. Theory of 3D block matching

The 3D block matching (3DBM) algorithm consists of two main
steps that have similar general structures with different processing
details. In the first step, a basic estimation of the seismic profile is
obtained by removing a part of random noises’ energy using hard-
thresholding. In the second step, using the basic estimation gained
in the previous step and a Wiener filter, a significant part of random
noises will be removed while preserving the features of signal. Each of
these two steps consists of five successive subsections: 1. 3D group-
ing of similar parts in the data, 2. 3D transformation of that group, 3.
Shrinkage of the transform spectrum, 4. Inverse 3D transformation,
and 5. Return the obtained estimates of similar parts to their original
locations. The three successive subsections, i.e. 3D transformation of
a group, Shrinkage of the transform spectrum, and Inverse 3D trans-
formation are called “Collaborative filtering”. After processing of all
parts, the obtained estimates can overlap and thus there are mul-
tiple estimates for each part of seismic image. We aggregate these
estimates using adoptive weights to form an estimation of seismic
profile. In the next parts, we will introduce all steps in details.

2.1. Stepl

In this step, a basic estimate of the noisy data is calculated as
follows:

2.1.1. 3D grouping of similar blocks

Let us consider the following model for seismic data zzX—R:
z(x) = y(x) + e(x), xeX (1)
where z is the noisy measured seismic data, y is the noise free seismic
data of interest, e is zero-mean, white noise with variance 02 and x is
the 2D spatial coordinate of the top left of data point that belongs to
the domain X c Z. 3DBM considers each seismic section as an image
and then divides it into many blocks Z, with the same size N x N (i.e.

with the same number of samples). Various block sizes have differ-
ent impacts on the final results (see the “Discussion 4” section). For
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