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A B S T R A C T

We present the features and results of a newly developed code, based on Gauss-Newton optimization tech-
nique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a
special emphasis has been put on representing the operations by block matrices for conjugate gradient iter-
ation. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix
can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse
level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementa-
tion and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate
how the coarseness of modeling grid in comparison to source (comp‘utational receivers) spacing can be
exploited for efficient computing, without compromising the quality of the inverted model, by reducing the
number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser
than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using
an experiment design where the deviation of source from straight tow line is considered. Finally, a real field
data inversion experiment is presented to demonstrate robustness of the code.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Controlled-Source ElectroMagnetic (CSEM) is considered to be a
credible tool for subsurface electrical resistivity imaging. It continues
to evolve steadily, and has a potential to be placed after 3D seis-
mic in hierarchy of importance for hydrocarbon exploration. Strack
(2014) argued that CSEM method is almost at the end of its con-
ceptual phase, and last decade has seen development of numerous
technologies out of which only the operationally mature ones have
survived. During this period, many surveys acquiring 3D CSEM data
have been carried out. Interpretation of these data sets requires the
development of 3D inversion algorithms. Considerable efforts have
been invested in the development of accurate and computationally
efficient algorithms (Newman and Alumbaugh, 1997; Sasaki, 2001;
Zhang, 2003; Commer and Newman, 2008).

In the linearized scheme of inversion algorithms, the model
parameters are updated via an iterative procedure. These updates
require solving many simulations, sometimes in the order of hun-
dreds to thousands of forward problems per iteration for the 3D
data set. These forward calls typically are the most computation-
ally intensive part of inverse modeling. Iterative solvers are generally

* Corresponding author.
E-mail address: mohammad.israil@gmail.com (M. Israil).

preferred for these computations due to the highly sparse matrix of
forward kernel and the less memory requirement. Recently, some
studies have demonstrated certain advantages of direct solver for
both forward (e.g., Streich, 2009) and inverse modeling (e.g., Grayver
et al., 2013). Another study using a direct solver in combination with
Schur compliments method demonstrated the advantages in scenar-
ios where inversion domain is small as compared to the modeling
one (Jaysaval et al., 2014).

In a nonlinear optimization problem, Newton method and its
variants such as Gauss-Newton (GN), quasi-Newton etc. have been
implemented in many geophysical problems. The Newton method
converges quadratically, but it has not been implemented widely
because the computation of the second order derivative of the pre-
dicted response (Hessian), needed in this method, is considered
prohibitively expensive (Haber et al., 2000). GN provides a good
compromise between computational cost and performance. GN only
requires the computation of the first order derivatives of the resid-
uals (building the Jacobian matrix), and the convergence speed is
far better than the one achieved by gradient-based methods. In
most studies, explicit formation of the Jacobian is avoided because
of its large storage requirement and it is bypassed through Krylov
subspace based iterative solver like conjugate gradient (CG) (e.g.
Mackie and Madden, 1993;Newman and Alumbaugh, 1997). Some
studies have illustrated the advantage of explicitly forming the
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Jacobian for case studies like land CSEM (Grayver et al., 2013). In
both cases, whether the Jacobian is formed or bypassed (using CG),
the adjoint technique (McGillivray and Oldenburg, 1990;Abubakar
et al., 2008) can be used for efficient computation. Another popular
scheme is the non-linear conjugate gradient (NLCG) method, where
the gradient is used to find a new conjugate direction for model
update and step length is estimated using line search methods. This
algorithm requires three forward calls per source per iteration. The
efficiency achieved due to less number of forward calls per inver-
sion iteration is offset by the larger number of inversion iterations
it takes to converge to a desired level of accuracy. Rodi and Mackie
(2001) showed, for 2D MT case, that NLCG without pre-conditioner
is not as efficient as GN-CG (GN with CG). Pre-conditioned NLCG
has also been implemented to improve the convergence (Newman
and Alumbaugh, 2000; Rodi and Mackie, 2001; Newman and Boggs,
2004) but it increases the cost per iteration. The computation cost of
pre-conditioned NLCG and GN-CG is found to be comparable by Rodi
and Mackie (2001). Superiority of NLCG over GN-CG is a debatable
issue. For detailed review of these methods the readers are referred
to Avdeev (2005) and Siripunvaraporn (2012).

In this contribution, we first briefly discuss the forward model-
ing algorithm, and then we revisit the GN-CG inversion scheme. We
discuss the Jacobian (or its transpose) matrix-vector multiplication
in detail where the Jacobian is represented using block matrices. The
Jacobian component formed due to system matrix differentiation is
made frequency independent. This reformulation adds efficiency at
the step of model updating via CG. We also briefly discuss the paral-
lel implementation of our code on shared memory system under the
framework of OpenMP. Through numerical experiments, we discuss
the reasoning of computing the adjoint field at selected grid nodes
rather than at receiver positions, in cases where grid spacing is larger
than the receiver spacing. This numerical test also studies the impact
of such an implementation on adjoint field computations when there
exists source drifting from the straight tow line.

2. Forward modeling algorithm

CSEM forward problem is solved using the vector Helmholtz
equation. We have implemented the scattered source (pri-
mary/secondary decomposition) approach (Alumbaugh et al., 1996).
In the frequency domain, equation for secondary electric field Es can
be written as,

� × � × Es − iyl0s
∗Es = iyl0(s∗ − sp∗)Ep, (1)

where i =
√−1, superscripts p and s denote the primary and sec-

ondary quantities, y represents the angular frequency, magnetic
permeability of free space in denoted by l0, the complex conduc-
tivity s∗ = s + iye consists of conductivity s and permittivity
e, while sp* represents the background complex conductivity. The
background medium is considered as 1D layered model for which
the primary field is computed using semi analytical methods given
by Løseth and Ursin (2007).

We implemented the finite difference method on a staggered grid
(Yee, 1966) to solve the forward modeling problem under the bound-
ary condition that the secondary electrical field parallel to boundary
faces vanishes. This leads to a linear system as,

Aes = b, (2)

where A is a Ne × Ne finite difference system matrix with max-
imum 13 non-zero elements per row, es is a vector containing
secondary field for all internal nodes and b contains the scattered
source information. Both A and b depend on conductivity of the
medium. The system matrix is transformed to a symmetric form by

pre-multiplying it with a diagonal matrix whose elements depend on
cell volume (Fomenko and Mogi, 2002). At boundary faces,

es × n̂ = 0, (3)

where n̂ is the unit vector normal to the boundary face.
The system matrix Eq. (2) is solved using pre-conditioned Bi-

conjugate gradient stabilized (BiCGStab) iterative solver. Incomplete
Cholesky factorization of sub block of the system matrix (Mackie
et al., 1994) with zero level of filling (ICLU(0)) is used as a pre-
conditioner. At the static limit y → 0, the terms containing the
conductivity in left hand side of Eq. (1) tend to zero. This adds non-
uniqueness to the problem and also slows down the convergence
considerably. To overcome this issue, a static correction, proposed
by Smith (1996), is applied periodically. Once the secondary field is
computed, the total electric field is given as

e = ep + es. (4)

Using the Maxwell’s equation, the computation of the magnetic
field from electric field is straight forward. It requires a simple trans-
formation matrix which is a discrete approximation of scaled curl
operator where the scaling factor is reciprocal of iyl0.

3. Inverse modeling algorithm

3.1. Formulation of the problem

The inverse problem is posed as the optimization of the objective
functional 0(m) defined as,

0(m) = 0d(m) + k0m(m, mref ), (5)

where 0d is defined as the scalar product of weighted misfit between
observed data and predicted data. The 0m depends on model param-
eters and is generally defined as model smoothness. 0d can be
expressed as,

0d(m) =
1
2

[
dobs − f(m)

]H
WT

dWd

[
dobs − f(m)

]
, (6)

where superscript H represents the Hermitian transpose. dobs =
(dobs

1 , dobs
2 , . . . , dobs

Nd
)T is a complex vector containing Nd observed data

points, f(m) denotes predicted data, where f is forward operator
which maps real model parameters to complex data values and Wd is
a Nd×Nd diagonal matrix representing data weighting. Generally, the
diagonal elements of Wd are reciprocal of the data standard deviation
(or amplitudes). Though the prime objective is to minimize 0d(m)
one has to redefine the problem as minimization of 0(m) because
the minimization of first term (0d(m)) is an unstable process and the
second term 0m(m, mref), known as regularization functional, stabi-
lizes the optimization (Tikhonov and Arsenin, 1977; Constable et al.,
1987). The mref contains a priori information. k is the scalar trade off
parameter which controls the influence of regularization term over
misfit.

The regularization functional is defined as,

0m

(
m, mref

)
=

(
m − mref

)
WT

mWm

(
m − mref

)
, (7)

where Wm defines the model smoothness which is taken as finite
difference approximation of Laplacian (�2).
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