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a b s t r a c t

Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffu-
sivities varying in the radial direction is performed. The structures of critical convection are obtained in
the cases of four different radial distributions of entropy diffusivity; (1) j is constant, (2) jT0 is constant,
(3) jq0 is constant, and (4) jq0T0 is constant, where j is the entropy diffusivity, T0 is the temperature of
basic state, and q0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl
number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the
Ekman number is 10�3 or 10�5. In the case of (1), where the setup is same as that of the anelastic dynamo
benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer bound-
ary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection
columns attach the inner boundary of the spherical shell.
A rapidly rotating annulus model for anelastic systems is developed by assuming that convection struc-

ture is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus
model well explains the characteristics of critical convection obtained numerically, such as critical
azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection
columns.
The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy

equation, is important for convection structure, because it determines the distribution of radial basic
entropy gradient which is crucial for location of convection columns.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The problem of thermal convection in rotating spherical shells
has been investigated vigorously since middle of 20th century as
an application to fluid motions in the interiors of stars, gas and
icy planets (e.g. Chandrasekhar, 1961). While most of the studies
assume the Boussinesq approximation, researches using the
anelastic approximation have become active recently.

In contrast to Boussinesq approximation where basic density
and material properties of the fluid are constant, there are varieties
of radial distributions of thermodynamic variables and properties
in anelastic approximation. Most of fundamental studies on this
topics from the viewpoint of geophysical and astrophysical fluid
dynamics assume ideal gas, polytropic relation and hydrostatic
balance (e.g. Jones et al., 2009, 2011). Numerical simulations of

the solar convection zone apply radial distributions of density,
temperature and pressure derived from helio-seismology and/or
solar evolution models as a basic state (e.g. Brun et al., 2004,
Browning, 2008). However, there is no guiding principle for deter-
mining viscosity and thermal diffusivity distributions. Molecular
viscosity and thermal diffusivity in gas planet atmospheres are
estimated by first principle calculations based on the molecular
dynamics (e.g. French et al., 2012). However, the molecular diffu-
sivities may be inappropriate for global thermal convection mod-
els, since small scale fluid motions governed by the molecular
diffusivities could not be resolved in the present global convection
model due to the restriction of numerical resources. From this
standpoint, eddy entropy diffusion is selected as a thermal diffu-
sive process in many studies.

The radial distributions of viscosity and entropy diffusivity
must influence on the radial location of convection. Especially,
entropy diffusivity is important since its radial distribution directly
affects the diffusive entropy distribution, whose radial gradient
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determines the local static stability. However, most of geophysical
and astrophysical fluid dynamic studies assume constant kine-
matic viscosity and entropy diffusivity for simplicity of the formu-
lation (e.g. Jones et al., 2009, 2011), and their results show that
convective columns concentrate near the outer boundary around
the equator when the density contrast is sufficiently large. Note
that this setup is also the only one which ensures that the control
parameters, such as the Ekman, Prandtl, Rayleigh numbers, do not
depend on radius.

Some simulations of the solar convection zone assume that vis-
cosity and diffusivity is in proportion to the �1=2 power of density
(e.g. Brun et al., 2004; Featherstone and Miesch, 2015). A pioneer-
ing study by Glatzmaier and Gilman (1981) investigates the effects
of radial distributions of viscosity and entropy (potential tempera-
ture) diffusivity at the same time under a moderate rotation rate,
and shows that location of convection moves from the outer to
inner regions as the diffusivities are increased in the outer regions
and are decreased in the inner regions. However, it is difficult to
determine which diffusivity governs the location of convection
from their results.

In this paper, we investigate structure of critical thermal con-
vection in anelastic fluids in a rotating spherical shell, with entropy
diffusivities varying in the radial direction, and show that the
radial distribution of the diffusivities is crucial to the location of
the convection. In Section 2, the anelastic model and formulation
of linear stability analyses are described. The radial distributions
of entropy diffusivity used in this study are also mentioned. In Sec-
tion 3, we illustrate the location of convection drastically changes
depending on the distribution of diffusivity. In Section 4, we
develop a rapidly rotating two-dimensional annulus model for
anelastic systems by extending the annulus model for Boussinesq
systems proposed by Busse (1986), Busse and Or (1986) and
Busse and Simitev (2014) as a simplified conceptual model for
three-dimensional rapidly rotating spherical convection systems.
Note that the annulus model developed here does not aim at an
approximation of the full spherical model with a high accuracy.
We would like to obtain and express essential physical mecha-
nisms of anelastic convection in rotating spheres and spherical
shells by using the annulus model. Section 5 summarizes the
results.

2. Model

2.1. Background state of the anelastic system

We consider thermal convection of ideal gas in a rotating spher-
ical shell. The background state of the anelastic system satisfies
polytropic relation and hydrostatic balance. Gravity is determined
by the mass of the inner sphere, and self gravitational force is not
taken into consideration. Background density q0 and pressure p0

non-dimensionalized with the values at the middle of the spherical
shell are expressed as follows (Jones et al., 2009):

q0 ¼ Tn
0; p0 ¼ Tnþ1

0 ; T0 ¼ c0 þ c1
r
; ð1Þ

c0 ¼ 2ho � v� 1
1� v ; c1 ¼ ð1þ vÞð1� hoÞ

ð1� vÞ2 ; ð2Þ

ho ¼ vþ 1
v expðNq=nÞ þ 1

; hi ¼ 1þ v� ho
v : ð3Þ

Here, r is the radial coordinate, ri and ro are the inner and outer radii
of the spherical boundary, respectively, v ¼ ri=ro is the radius ratio
of the shell, Nq ¼ ln½qðriÞ=qðroÞ� is the logarithm of density ratio
between the inner and outer spheres, and n is the polytropic index.
For a perfect gas, heat capacity ratio c should be related to poly-
tropic index as c ¼ 1þ 1=n to ensure adiabatic background state

(e.g. Jones et al., 2011). We fix these parameters as v ¼ 0:35
ðri ¼ 0:538; r0 ¼ 1:538Þ, Nq ¼ 5, and n ¼ 2 (Fig. 1).

2.2. Governing equations for disturbances

We investigate linear stability of the basic state in thermal con-
ductive equilibrium state with no fluid motion. The radial entropy
distribution of the basic state is,

dS
dr

¼ � C
jq0T0r2

; C ¼
Z ro

ri

1
jq0T0r2

dr

 !�1

; ð4Þ

where jðrÞ is entropy diffusivity normalized with the value at the
middle of the shell. The linearized equations of disturbances with
respect to this basic state are,

r � ðq0uÞ ¼ 0; ð5Þ
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Pr
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r � ðq0T0jðrÞrSÞ: ð7Þ

u; S; p are velocity, entropy disturbance and pressure distur-
bance, respectively. r and er are radial coordinate and the unit vec-
tor in the radial direction, respectively. Nondimensional
parameters appearing in the governing equations are the Rayleigh
number Ra, the Ekman number E, the Prandtl number Pr, which are
defined as follows:

Ra ¼ g0DSD
3

jcmcCp
; E ¼ mc

XD2 ; Pr ¼ mc
jc

: ð8Þ

here, g0 is the value of gravitational acceleration at r ¼ 1, DS is
entropy difference between inner and outer spheres, Cp is specific
heat capacity at constant pressure, D ¼ ro � ri is the thickness of
the shell, ri; ro are the radius of the inner and outer sphere, jc; mc
are the values of entropy diffusivity and kinematic viscosity at the
middle of the sphere. In addition to these non-dimensional param-
eters, the radius ratio v appears in the boundary conditions. We

Fig. 1. Radial distributions of the basic state. The solid line is density, broken line is
temperature. v ¼ 0:35;Nq ¼ 5, and n ¼ 2. The horizontal axis covers the whole shell
in the radial direction ðri ¼ 0:538; r0 ¼ 1:538Þ.
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