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A B S T R A C T

The stability of soil slope is a critical parameter in geological engineering. In order to better understand the
failure of soil slope, the virtual-bond general particle dynamics (VB-GPD) method was developed to simulate the
slope stability. Virtual-bond failure was defined by the Drucker-Prager yield criterion, and the initiation and
growth of plastic deformation and failure of the soil slope was determined via the plastic-flow rule. Two nu-
merical cases were presented to demonstrate the validity and feasibility of the proposed method. After the safety
factor and failure process of these cases were derived, the numerical results obtained via VB-GPD were found to
concur with the results obtained by FEM, demonstrating that the VB-GPD method can overcome the excessively
skewed mesh for FEM. Hence, it was concluded that the VB-GPD method is efficient at simulating soil slope
stability and studying the failure of soil slopes.

1. Introduction

The stability of both natural and anthropogenic slopes is a crucial
aspect in both geological and geotechnical engineering (Park and
Michalowski, 2017). The limit equilibrium method (LEM) is widely
used to conduct slope stability analyses. The most common limit
equilibrium technique is the slice method, such as the ordinary method
of slices (Fellenius, 1936) and the simplified Bishop method (Liu et al.,
2015). A number of studies on slope stability have been performed
using the LEM (Zhou and Cheng, 2013; Cheng and Zhou, 2015; Sun
et al., 2015; Chakraborty and Dey, 2016; Yu et al., 2018). However, this
method tends to give approximate values for the safety factor and does
not consider the internal stress-strain relationship, because of which the
failure process of the slope cannot be determined (Chen, 2004).
Therefore, numerical simulation methods are used to analyze the soil
slope stability as they compensate for the drawbacks of the LEMs. For
example, Farias and Naylor (1998) used the finite element method
(FEM) and Khan et al. (2016) used the finite difference method (FDM)
to study slope stability. However, only an approximate safety factor can
be determined via FEM and a highly refined mesh is needed to increase
its accuracy (Farias and Naylor, 1998). Also, while a highly refined
mesh may provide a more precise safety factor, there will still be a
defect caused due to the severe mesh distortion that cannot be resolved
and will lead to inaccurate calculations (Baghini et al., 2016). There-
fore, these limitations of the FEM have motivated scholars and

engineers to implement mesh-free techniques to analyze slope stability.
Over the past few decades, mesh-free techniques have quickly

evolved in the field of engineering, and many geological engineering
problems have been solved via meshless methods, such as the element-
free Galerkin (EFG) method (Belytschko et al., 1994), the reproducing
kernel particle method (RKPM) (Liu et al., 1995), and smooth particle
hydrodynamics (SPH) (Lucy, 1977; Monaghan and Gingold, 1983).
However, imposing essential boundary conditions for RKPM continues
to be an issue, and subsequently the EFG takes more time for calcula-
tion when compared to the SPH method (Chinesta et al., 2011).

Smooth particle hydrodynamics (SPH) was proposed (Lucy, 1977;
Monaghan and Gingold, 1983) and, initially, used to model fluid flow.
Later on, Swegle et al. (1995), Bui et al. (2011) and Peng et al. (2015)
applied and enhanced the SPH method to analyze slope stability and
post-failure behavior. In order to simulate tensile crack initiation and
propagation, a pseudo-spring-based fracture model was introduced to
the SPH framework by Chakraborty and Shaw (2013), in which the
efficient interaction between immediate neighbors is formulated by
creating a suitable spring-like connectivity among discrete particles.
However, the pseudo-spring-based fracture model (Chakraborty and
Shaw, 2013) only considered the longitudinal stress and neglected the
tangential and shear stresses between particles. Therefore, the pseudo-
spring-based fracture model can only be used to simulate the tensile
failure of materials caused by elastic damage. However, the failure of
soil slopes, which is related to elastoplastic characteristics, is induced
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by longitudinal, tangential, and shear stresses.
The code for general particle dynamics (GPD) (Zhou et al., 2015)

was developed using the framework of SPH. The GPD method adopts
the concept of life-dead particles and overcomes the shortcomings of
the SPH and FEM methods during the simulation of local damage or
problems with large deformations. Zhou et al. (2015), Zhou and Bi
(2016), Bi et al. (2016a), and Zhou and Zhang (2017) highlighted the
mechanisms of crack propagation, fracture and fragmentation by using
the GPD method, followed by an analysis of the progressive failure
processes of reinforced rock slopes. In the previous GPD code, a particle
is killed when its stresses satisfy a critical value, and the killed particle
has no effect on its neighbors during the brittle failure process analyzed
using GPD. However, the plastic failure process of materials is different
from their brittle failure process, and the particle, being in a plastic
state, will continue to have an impact on other particles during the
plastic deformation process. Therefore, the issue of plastic deformation,
which occurs in soil slope instability, cannot be studied well by using
the traditional GPD method.

In order to improve the study of plastic deformation using the GPD
method, a virtual-bond general particle dynamics (VB-GPD) was pro-
posed to study the failure process and analyze the stability of soil slope.
Thus, the virtual-bond model was introduced into the GPD theory and
used to describe the interaction between any two particles. Virtual
bonds between any two particles are intrinsic. When the internal
bonding force satisfies the yield criterion, the virtual bonds between
any two particles turn into plastic bonds and localization strain is in-
itiated in these areas. Thus, the VB-GPD can effectively overcome the
stress instability of SPH and predict the plastic deformation character-
istics of the soil slope with greater accuracy. Also, two numerical ex-
amples are provided to validate the accuracy and feasibility of the VB-
GPD method in predicting the formation of strain zone and progressive
failure process in the soil or/and soil slope. The final numerical results
of the safety factor and critical slip surface obtained from the proposed
VB-GPD method are very similar to the FEM solutions. Moreover, the
change in the surface and toe arrangement of the slope, obtained from
VB-GPD, is much more evident than that obtained from FEM, which
implies that the proposed VB-GPD method could be a promising nu-
merical method for possible future application in the analysis of large
deformations in geotechnical engineering.

This paper is structured as follows: the main steps of VB-GPD are
presented in Section 2, the introduction and derivation of virtual bonds
are given in Section 3, the numerical results pertaining to the soil
sample under axial compression are illustrated in Section 4, an example
of soil slope analysis is given in Section 5, and finally the conclusions
drawn from the numerical results are in Section 6.

2. Introduction to the VB-GPD algorithms

2.1. Governing equations

The governing equations for the soil slope behavior based on con-
tinuum mechanics are given as follows (Lucy, 1977; Monaghan and
Gingold, 1983; Libersky and Petscheck, 1991; Shaw and Reid, 2009):
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where ρ is the soil initial density, vαdenotes the velocity vector,
σαβdenotes the total stress tensor, xαis spatial coordinate of the particles,
d

dt is the time derivative within the Lagrangian frame, and the super-
scripts α and β=1, 2 are integer indices indicating the two spatial

directions.

2.2. Elastic-plastic constitutive Laws

The total stress tensor in Eq. (2) is composed of hydrostatic and
deviatoric stresses that are shown as follows:

= −σ τ pδαβ αβ αβ (4)

where δαβ is called Kronecker's delta, α= β when δαβ=1, and α≠ β
when δαβ=0.

In this paper, the hydrostatic pressure p is expressed as follows:
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where σxx, σyyand, σzz denote the components of stress tensor in the x, y
and, z directions, respectively.

Generally, the stress rate is assumed to be proportional to the strain
rate, which is defined by:

=τ Gε̇ 2 ̇αβ αβ (6)

where G is shear modulus, τ α̇β is stress rate, and εα̇β is strain rate. Using
the definition of the total stress tensor in Eq. (4) and the hydrostatic
pressure in Eq. (5), the stress rate can be derived as follows:
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When considering the issue of deformation, a stress rate must be
considered for the sake of objectivity. This is known as the Jaumann
stress rate σ ̇ αβ and is defined by:
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where the strain rate εα̇βis defined as follows:
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and ω̇ is the spin rate tensor given by:
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The total strain rate tensor εα̇β is obtained by the following formula
(Bui et al., 2011):
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where the elastic strain rate tensor εė
αβ is expressed as follows:
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where G is the shear modulus, τ α̇β is the deviatoric stress rate tensor, E is
the Young's modulus, and v is the Poisson's ratio.

The plastic strain rate tensor εṗ
αβis defined by plastic flow rules as

follows:
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where Q is the potential function, which controls the direction of the
plastic strain gradient; λ ̇ is the rate of change of the plastic multiplier
λ. The value of the plastic multiplier λ is calculated by using the con-
sistency condition expressed as follows:
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When the internal friction angle ϕ is relatively small, it leads to
results related to non-associated flow that were employed in this study.
The plastic potential function can be expressed as:
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