Accepted Manuscript

Article

Appending triphenyltriazine to 1,10-phenanthroline: a robust electron-transport material for stable organic light-emitting diodes

Guang Jin, Jun-Zhe Liu, Jian-Hua Zou, Xiao-Lan Huang, Meng-Jiao He, Ling Peng, Ling-Ling Chen, Xu-Hui Zhu, Junbiao Peng, Yong Cao

PII: S2095-9273(18)30115-4

DOI: https://doi.org/10.1016/j.scib.2018.03.003

Reference: SCIB 355

To appear in: Science Bulletin

Received Date: 7 February 2018
Revised Date: 28 February 2018
Accepted Date: 1 March 2018

Please cite this article as: G. Jin, J-Z. Liu, J-H. Zou, X-L. Huang, M-J. He, L. Peng, L-L. Chen, X-H. Zhu, J. Peng, Y. Cao, Appending triphenyltriazine to 1,10-phenanthroline: a robust electron-transport material for stable organic light-emitting diodes, *Science Bulletin* (2018), doi: https://doi.org/10.1016/j.scib.2018.03.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Appending triphenyltriazine to 1,10-phenanthroline: a robust electron-transport material for

stable organic light-emitting diodes

Guang Jin¹, Jun-Zhe Liu¹, Jian-Hua Zou¹, Xiao-Lan Huang, Meng-Jiao He, Ling Peng, Ling-Ling

Chen, Xu-Hui Zhu,* Junbiao Peng and Yong Cao

State Key Laboratory of Luminescent Materials and Devices, and Institute of Polymer

Optoelectronic Materials and Devices, South China University of Technology (SCUT), Guangzhou

510640, China.

¹ These authors contributed equally to this work.

* Corresponding author. E-mail address: xuhuizhu@scut.edu.cn (X.-H. Zhu)

Received: 2018/2/7; Revised: 2018/2/28; Accepted: 2018/3/1

ABSTRACT

There has been an increasing demand for high-performance and cost-effective organic

electron-transport materials for organic light-emitting diodes (OLEDs). In this contribution, we

present a simple compound 3-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-1,10-phenanthroline

through the facile Pd-catalyzed coupling of a triphenyltriazine boronic ester with 3-bromo-

1,10-phenanthroline. It shows a high $T_{\rm g}$ of 112 °C. The ultraviolet photoelectron spectroscopy

measurements reveal a deep HOMO level of -6.5 eV. The LUMO level is derived as -3.0 eV, based

on the optical bandgap. The low-temperature solid-state phosphorescent spectrum gives a triplet

energy of ~2.36 eV. n-Doping with 8-hydroxyquinolatolithium (Liq, 1:1) leads to considerably

improved electron mobility of $5.2 \times 10^{-6} - 5.8 \times 10^{-5} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ at $E = (2-5) \times 10^5 \text{ V cm}^{-1}$, in

contrast with the triarylphosphine oxide-phenantroline molecular conjugate we reported previously.

It has been shown that through optimizing the device structure and hence suppressing

polaron-exciton annihilation, introducing this single Liq-doped electron-transport layer could offer

Download English Version:

https://daneshyari.com/en/article/8917303

Download Persian Version:

https://daneshyari.com/article/8917303

<u>Daneshyari.com</u>