
Please cite this article in press as: Bruder V., et al., Prediction-based load balancing and resolution tuning for interactive volume raycasting. Visual Informatics (2017),
http://dx.doi.org/10.1016/j.visinf.2017.09.001.

Visual Informatics () –

Contents lists available at ScienceDirect

Visual Informatics

journal homepage: www.elsevier.com/locate/visinf

Prediction-based load balancing and resolution tuning for interactive
volume raycasting
Valentin Bruder *, Steffen Frey, Thomas Ertl
University of Stuttgart, Germany

a r t i c l e i n f o

Article history:
Received 11 August 2017
Accepted 4 September 2017
Available online xxxx

Keywords:
Volume raycasting
Performance prediction
Load balancing

a b s t r a c t

We present an integrated approach for real-time performance prediction of volume raycasting that we
employ for load balancing and sampling resolution tuning. In volume rendering, the usage of acceleration
techniques such as empty space skipping and early ray termination, among others, can cause significant
variations in rendering performance when users adjust the camera configuration or transfer function.
These variations in rendering times may result in unpleasant effects such as jerky motions or abruptly
reduced responsiveness during interactive exploration. To avoid those effects, we propose an integrated
approach to adapt rendering parameters according to performance needs. We assess performance-
relevant data on-the-fly, for which we propose a novel technique to estimate the impact of early ray
termination. On the basis of this data, we introduce a hybrid model, to achieve accurate predictions with
minimal computational footprint. Our hybrid model incorporates aspects from analytical performance
modeling and machine learning, with the goal to combine their respective strengths. We show the
applicability of our prediction model for two different use cases: (1) to dynamically steer the sampling
density in object and/or image space and (2) to dynamically distribute the workload among several
different parallel computing devices. Our approach allows to reliably meet performance requirements
such as a user-defined frame rate, even in the case of sudden large changes to the transfer function or the
camera orientation.

© 2017 Zhejiang University and Zhejiang University Press. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Volume visualization is a widely used tool for visualization of
measured and simulated data in numerous different areas such as
physics, engineering, biology and many more. By enabling users of
visualization applications to dynamically interact with the volume
data, additional insight beyond the initial focus may be gained.
Thereby, classic user interactions are adjustments to the transfer
function (which maps density values to color) as well as changes
to the camera configuration (e.g., rotation and zooming). There
are typically two main factors that contribute to a satisfying user
experience during interactive exploration of volume data sets: low
response times and a high rendering quality. While the latter can
be achieved by employing a high sampling of the data set, low
latencies and high frame rates are crucial for response times. In
the context of the recent revive of virtual reality for scientific
applications (Laha et al., 2012), maintaining high and stable frame

* Corresponding author.
E-mail address: valentin.bruder@visus.uni-stuttgart.de (V. Bruder).
Peer review under responsibility of Zhejiang University and Zhejiang

University Press.

rates as well as low latencies gains evenmore importance. In those
applications, variable frame rates often tend to cause unpleasant
side effects, such as cybersickness, for many users.

To be able to gain interactive frame rates for volume visual-
izations on workstations, GPUs are often used to accelerate the
computation and rendering. Besides the hardware used for com-
putation, interactively changed parameters (i.e., transfer function
and camera configuration) have a significant impact on rendering
performance. In order to accomplish constant interactivity, those
variations in performance need to be accounted for, especially
in challenging cases with significant changes between frames
(e.g., switching to a different transfer function). One way of ab-
sorbing such effects is to adapt the sampling density in object or
image space. However, in the case of an interactive application, the
basis for this adaption has to be some kind of assessment of how
the performance will evolve in upcoming frames (after potentially
big changes) in order to avoid unpleasantly long response times or
jerky motions.

Predicting performance of volume rendering on parallel hard-
ware is a challenging task because of the involved complexity.
Numerous factors have a significant, non-obvious impact on per-
formance. For instance, this includes the hardware employed for

http://dx.doi.org/10.1016/j.visinf.2017.09.001
2468-502X/© 2017 Zhejiang University and Zhejiang University Press. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.visinf.2017.09.001
http://www.elsevier.com/locate/visinf
http://www.elsevier.com/locate/visinf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:valentin.bruder@visus.uni-stuttgart.de
http://dx.doi.org/10.1016/j.visinf.2017.09.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite this article in press as: Bruder V., et al., Prediction-based load balancing and resolution tuning for interactive volume raycasting. Visual Informatics (2017),
http://dx.doi.org/10.1016/j.visinf.2017.09.001.

2 V. Bruder et al. / Visual Informatics () –

parallel computation, as well as the specific algorithm and param-
eter configuration that may be changed during runtime.

We propose our method to dynamically predict performance
of a volume raycasting application that uses popular acceleration
techniques. To show the usability of our technique, we present two
use cases that are based on our frame time prediction. In the first
one,weuse the predictions to dynamically adjust the sampling rate
of the volume rendering process to reliably meet a user-defined
frame target (i.e., interactive frame rates). Thereby, we can adjust
the sampling rate in ray space (integration step size along rays) as
well as in image space (image resolution, i.e. the number of rays).
As a second use case, we dynamically distribute the computational
load among multiple heterogeneous GPUs and balance this load
according to our predicted frame execution times.

In the following section, we give an overview on related work
(Section 2), afterwardswe discusswhatwe consider to be themain
contributions of our work.

• We present our general approach for performance predic-
tion and the tuning of sampling rate in image and ray space
(Section 3). It is based on the following components:

• assessing performance-critical numbers of raycasting accel-
eration techniques, including the impact of early ray termi-
nation (ERT) and empty space skipping (Section 4);

• predicting on the fly the execution time of upcoming frames
using a hybrid performance model (Section 5);

• and balancing the computational load among multiple de-
vices in real-time as well as steering rendering quality to-
wards a user-defined frame rate (Section 6).

To the best of our knowledge, on-line prediction of volume ren-
dering performance has not been published before our conference
paper (Bruder et al., 2016). Thiswork is an extended version of that
paper. In detail, the extensions compared to our conference paper
are:

• load balancing between different GPUs as an additional use
case,

• resolution adjustment in image space, also combined with
tuning in ray space,

• and minor improvements and additions, such as local illu-
mination.

We present and discuss results in Section 7 and conclude our work
in Section 8.

2. Related work

Volume visualization and frame rate adaption. Volume visualiza-
tion has been a core subject in scientific visualization research
for several decades. In recent times, raycasting has turned out
to be one of the mostly used techniques, with its parallel nature
supporting GPU and distributed implementations (Engel et al.,
2006). Salama et al. (2009) give an overview on basic volume
rendering techniques, thereby focusing on illumination and accel-
eration techniques that we use as well.

Manyworks have focused on distributed volume rendering, due
to the computational requirements posed by high resolution data
sets. The current state of the art in GPU techniques for interactive
large-scale volume visualization is discussed by Beyer et al. (2015).
Especially for distributed rendering, load balancing plays an impor-
tant role (Ma et al., 1994; Marchesin et al., 2006). In this context,
Fogal et al. (2010) discuss and investigate different algorithms for
load balancing in their work, while Müller et al. (2006) demon-
strate that zooming on parts of volume data sets critically impairs
load balance during distributed rendering. To counter this effect,
they dynamically reorganize the data distribution in their cluster.

The decision on when to move data to another node is based on
a simple cost function and the actual load of the previous frame.
While such cost functions as basis for load balancing typicallywork
well in the case of gradual changes, sudden changes (e.g. due to a
rapidly adjusted transfer function) cannot be handled adequately,
inducing significant load-imbalance and performance drops.

Rendering systems typically fix either image quality or frame
rate during user interaction. There is some work on techniques
designed to keep stable frame rates for image-based rendering,
including what we have done as well as one application of our
prediction model. Shen and Johnson (1994), Qu et al. (2000) and
others re-use pixel values from previous frames and use that
to achieve stable frame rates. Wong and Wang (2014) have the
same goal for real-time rendering applications but use an open-
loop approach of the image generation process underpinned by
estimations of its constituents. Using artificial neural networks and
fuzzy models, as well as detailed descriptions of distinct rendering
processes, they relate inputs and outputs in a non-linear model.
In contrast, Woolley et al. (2003) take a more simple approach by
using metrics, based on image space distances to steer progressive
raytracing. Frey et al. (2014) use a progressive approach to steer
the volume visualization process, thereby focusing on resource
management, response times and sampling errors. Compared to
our approach however, none of those techniques adapt the frame-
rate-based on an on-the-fly prediction of the execution time.

Performance prediction. There is a large amount of research in the
area of application performance prediction andmodeling for paral-
lel architectures. However, it is mostly limited to the fields of sys-
tem architecture and high-performance computing, whereas the
research in (interactive) visual computing, which has its own char-
acteristics and challenges, is comparably sparse. Various different
approaches have beenproposed for performancemodeling, includ-
ing performance skeletons (Sodhi et al., 2008), regression (Barnes
et al., 2008), genetic algorithms (Tikir et al., 2007), and machine
learning (Lee et al., 2007). Those approaches primarily target
performance prediction in large-scale (HPC) systems. However,
visual computing applications have different characteristics than
those systems in that they typically rely heavily on interaction. The
data that is being used for performance modeling typically stems
from either specific hardware characteristics, such as (parallel)
computational operations per second and memory bandwidth; or
from empirical measurements, such as frame execution times and
performance counters. Using the latter combined with an analyti-
cal model has been defined as a ‘‘semi-empirical’’ model (Hoefler
et al., 2011). In our approach, we employ amachine learningmodel
to learn from execution timemeasurements and combine thiswith
an analytical model, based on known properties of the volume
raycasting algorithm. Therefore, we consider it to be such a semi-
empirical model.

There exist various off-line performance modeling tools for
GPGPU, which has many similarities to GPU volume rendering.
An overview of the landscape is given by Madougou et al. (2016).
Amarís et al. (2016) compare different machine learning models,
namely linear regression, support vector machines and random
forests with a BSP-based analytical model for the task of GPU
execution time prediction.

In contrast, work on real-time rendering or scientific visualiza-
tion incorporating real-timeperformance prediction is comparably
sparse. The proposed techniques mainly focus either on perfor-
mancemodels for the visualization pipeline (Bowman et al., 2004)
or on object-order rendering algorithms (Wimmer and Wonka,
2003; Tack et al., 2004). Ganestam and Doggett (2012) perform
auto tuning for interactive ray tracing, thereby using an analytical
GPU architecture model as a basis. Compared to our work, their
approach mainly focuses on ray-tracing and while their model
incorporated caching effects to some degree, other hardware-level

Download English Version:

https://daneshyari.com/en/article/8917932

Download Persian Version:

https://daneshyari.com/article/8917932

Daneshyari.com

https://daneshyari.com/en/article/8917932
https://daneshyari.com/article/8917932
https://daneshyari.com

