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Abstract
Targeted drugs that disrupt proteins that are dysregulated in
cancer have emerged as promising treatments because of
their specificity to cancer cell aberrations and thus their
improved side effect profile. However, their success remains
limited, largely due to existing or emergent therapy resistance.
We suggest that this is due to limited understanding of the
entire relevant cellular landscape. A class of mathematical
models called discrete dynamic network models can be used
to understand the integrated effect of an individual tumor’s
aberrations. We review the recent literature on discrete dy-
namic models of cancer and highlight their predicted thera-
peutic strategies. We believe dynamic network modeling can
be used to drive treatment decision-making in a personalized
manner to direct improved treatments in cancer.
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Introduction
Cancer, a disease characterized by uncontrolled cell
growth, can lead to devastating effects on the human
body. Cancer is one of the most common causes of
deaths worldwide. Normal working cells over time
accumulate genetic and epigenetic changes that lead to
dysregulation of the signaling pathways that regulate

cellular behavior and the acquisition of the hallmark
features of cancer. These hallmark features include
proliferation, evasion of growth suppression and cell
death, invasion, and metastasis [1]. More recently,
modulation of the immune response has emerged as an
important additional feature of cancer [2].

Traditional medical modalities of cancer treatment
(when surgical removal is not an option) include
chemotherapy and radiation, which disrupt DNA syn-
thesis of all cells and lead to cessation of proliferation

and induction of cell death. More recently, targeted and
immunological therapy have emerged as promising mo-
dalities of cancer treatment. Targeted therapies are
drugs that target a specific protein within a signaling
pathway that is critical to one of the above cancer hall-
marks. They tend to be less toxic than chemotherapy
because the targeted protein is usually not expressed in
healthy cells. With the growing arsenal of targeted
therapies for cancer and other diseases, the question
becomes how to most effectively use targeted therapy.

Individualization of oncologic treatment:
where we stand now
Currently, targeted therapies are approved as first or
second line agents in multiple cancer types and are
generally used as single agents. Personalized tumor in-

formation is currently used to a very limited extent.
There are initiatives for screening for specific genetic or
expression features of cancers and targeting the treat-
ment accordingly but the benefit they have so far
demonstrated is limited [3,4]. For example, in non-small
cell lung cancer, if a tumor contains an EGFR inhibitor
sensitizing mutation, the treatment decision would be
an EGFR inhibitor such as gefitinib [5]. Gefitinib,
compared to traditional chemotherapy, has a slightly
improved progression-free period (about 11 months
versus 5 months) and overall survival (30 months versus

24 months) [6]. This trend is similar for many targeted
therapies in lung cancer [7] and other cancer types
[8,9]. But just like traditional chemotherapy, the effi-
ciency of targeted therapies is thwarted by either
intrinsic resistance to the drug or the development of
drug resistance. We propose that models that incorpo-
rate comprehensive tumor information would help
improve treatment efficacy beyond the current “single
mutation, single treatment” strategy. For example,
multivariate models using clinical and epidemiologic
information are frequently and successfully used for
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making clinical decisions [10e12]. At present there are
no clinical multivariate models that incorporate molec-
ular/genomic information.

The critical information required to determine which
patients should get a targeted therapy can be formulated
as a set of questions:

� What are the characteristics of a specific tumor that
would lead it to respond in some way or be outright
resistant to a targeted therapy?

� Should we target multiple aspects of cancer in com-
bination? Which targeted drug combinations are
optimal?

� As a cancer acquires resistance to our current treat-
ment regimen, how should we augment the regimen
to effectively treat this evolved cancer?

We propose that answers to these questions can be
elicited by systems biology approaches. Systems biology
provides a powerful set of tools that allows the integra-
tion of signaling and gene regulatory networks, genomic,
and epigenomic information into system-level models
[13e17]. These models can be used to incorporate such
information from individual cancer cells to understand

these cells’ individual dynamics, their response or
resistance to treatment. Here we describe how these
network models can help to understand cancer cell dy-
namics and to rationally develop individualized targeted
strategies to improve oncologic treatment.

Oncogenic signaling networks underlie
cancer
Molecular networks inside healthy cells contain so-
called proto-oncogenes and tumor suppressor genes.
Proto-oncogenes may acquire a mutation that then
makes the cell adopt a cancer hallmark phenotype (e.g.
proliferation); these altered genes in cancer cells are
referred to as oncogenes. Tumor suppressor genes ward
against aberrant phenotypes when they are active; al-
terations that cause their inactivation lead to cancer

development. Alterations that activate oncogenes,
combined with alterations that inactivate tumor sup-
pressor genes, perturb the cell’s signaling pathways, lead
to incorrect cellular decisions and behaviors (prolifera-
tion instead of quiescence, survival instead of
apoptosis), and ultimately to a cancer phenotype [1].

In order to understand the often indirect connection
between an alteration and a cellular outcome, we need
to consider the network of interactions and regulatory
relationships the alteration is embedded in. In a within-

cell network, nodes represent proteins, RNA, or small
molecules and the edges are the interactions and regu-
latory relationships between nodes. The edges are
directed (indicating the direction of mass- or

information flow) and can be positive (activating) or
negative (inhibitory). This network usually also involves
proxies for one or more cellular outcomes and the
external signals that can lead to these cellular outcomes.
The receptor tyrosine kinase (RTK) signaling network
shown in Figure 1 and described in detail in Box 1 il-
lustrates several features of signaling networks that
underlie cancer phenotypes.

The network representation of a signal transduction
process, such as the one described above, is static, while
biological processes happen over time. In order to un-
derstand the dynamic behavior of a system, each node
needs to be characterized by a state variable that can
change in time and that is affected by the state variable
of the nodes that regulate it. Both quantitative models
(using continuous state variables) and qualitative
models (using discrete state variables) exist. Quantita-
tive models, generally using systems of ordinary or par-

tial differential equations, can be highly accurate and
provide quantitative information (e.g. drug dosage in-
formation, drug response time, or fold-changes of pro-
tein concentrations) that is either difficult or impossible
to obtain with qualitative models because of their use of
discrete state variables. Phenomenological pharmacoki-
netic/pharmacodynamic models of the physiological
response to drugs are an integral part of drug testing and
discovery. The use of quantitative models for mecha-
nistic modeling of signal transduction networks is highly
desirable, and there are multiple examples of the unique

insights such a quantitative approach can provide [18e
23], but their widespread use is limited by the scarcity
of high-quality quantitative data these models require,
such as kinetic and temporal information about indi-
vidual nodes in the network and/or quantitative micro-
scopy time course data to fit the unknown model
parameters. Discrete and quantitative models are often
consistent in capturing the response repertoire of
signaling networks (e.g. their potential bistability or
response to perturbations) [17,20,21,24,25].

Discrete dynamic network models in
biology
Discrete dynamic network models (DDNMs) can be
constructed using widely available biological informa-
tion. In DDNMs each node i is assigned a variable si that
can take one of a small number of discrete states, where

each state is characterized (and defined) by its influence
on the state of the nodes j that have an incoming edge
from node i ði/jÞ. Thus, the direct regulators of each
node determine its future state, and this is encoded in
the regulatory function f of the node. In the simplest
case, the Boolean scenario, each node takes one of two
states: si ¼ 0ðOFFÞ or si ¼ 1 ðONÞ, assuming that an
implicit threshold exists above which the node is suffi-
ciently active to regulate its target nodes. Each regula-
tory function f can be expressed in terms of Boolean

2 Mathematical modelling
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