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Abstract
Constraint-based models (CBMs) are key tools for elucidating
the behavior of genome-scale metabolic networks, but the
assumption of steady state hinders their application to spatio-
temporally varying and multicellular systems. Models that inte-
grate CBMs with kinetics to allow dynamic simulation through
dynamic flux balance analysis (DFBA) can circumvent this
problem as well as the limitations of purely kinetic models. With
many technical barriers for DFBA overcome in recent years,
applications traditionally focused on metabolic engineering have
expanded to address problems such as evolution of microbial
communities, functions of biomedically relevant biofilms, and diet
effects on Parkinson’s disease. By addressing substantial
computational challenges, we expect that such hybrid metabolic
models will pave the way towards whole-cell modeling.

Addresses
1 Department of Biosystems Science and Engineering, SIB Swiss
Institute of Bioinformatics, ETH Zurich, Basel, SwitzerlandQ1
2 Systems Biology PhD Program, Life Science Zurich Graduate
School, Zurich, Switzerland

Corresponding author: Stelling, Jörg (joerg.stelling@bsse.ethz.ch)

Current Opinion in Systems Biology 2017, -:1–8

This review comes from a themed issue on Regulatory and metabolic
networks (2018)

Edited by Bas Teusink and Uwe Sauer

For a complete overview see the Issue and the Editorial

Available online xxx

https://doi.org/10.1016/j.coisb.2017.12.003

2452-3100/© 2017 Elsevier Ltd. All rights reserved.

Keywords
Metabolic networks, Constraint-based models, Genome-scale models,
Multi-scale models, Dynamic flux balance analysis.

Introduction
Metabolic networks are fundamental in biology, enzy-
matically converting available substrates into products
that include the cellular components needed for survival

and growth. Understanding, predicting, and ultimately
controlling their behavior is a challenge of crucial
importance, not only for basic science but also for
manifold applications ranging from metabolic engi-
neering to human health and disease. Experimental
technologies, most importantly high-throughput
metabolomics, advance rapidly, but system-level math-
ematical modeling is needed in order to transform data
into insight [1].

Constraint-based models (CBMs) are currently the
most established and powerful tools for large-scale
metabolic network modeling [2]. They are fundamen-
tally based on the quasi-steady-state assumption
(QSSA), exploiting that metabolism is fast and therefore
approximately invariant on the time-scale of other pro-
cesses such as gene regulation with which it interacts

[3]. This makes CBMs and their analysis linear,
parameter-free, and applicable to metabolic networks of
virtually any species with a sequenced genome [4,5].
The drawback of relying on the QSSA is that CBMs do
not represent metabolite concentrations or their dy-
namics. Rather, they predict metabolic flux distribu-
tions, steady-state reaction rates for all reactions in the
network, which have been studied extensively in many
organisms, using a plethora of computational methods.
The three main computational approaches are (i) flux
balance analysis (FBA), which predicts fluxes by

assuming cellular objectives such as maximization of
growth rate in microorganisms, (ii) pathway analysis,
which identifies all possible flux routes through the
network, and (iii) random flux sampling, which seeks to
determine probability distributions of feasible steady-
state fluxes [6].

CBMs have been remarkably successful in areas that
range from systematically representing biological
knowledge and data [7] to devising metabolic engi-
neering strategies [8]. However, the QSSA limits their

applicability beyond the obvious: they do not capture
the dynamic behavior of cells in changing environments.
Even for a constant environment, CBMs alone cannot
predict fluxes from metabolite concentrations (and vice
versa). Bridging this gap between fluxes and concen-
trations is a fundamental challenge of particular impor-
tance for multicellular systems such as microbial
communities or human tissues because the metabolite
concentrations in the environment couple the cells’
behaviors to each other (Figure 1). In such cases,
methods established for unicellular CBMs are not

directly applicable because of many challenges that
range from model construction, to assumed cellular ob-
jectives, to context-dependent interactions between
cells [9]. For example, modified cellular objectives for
FBA of microbial communities [10,11] are hard to justify
biologically (e.g., why should an individual strain’s
objective be to maximize the overall growth rate of the
community?). For unbiased methods such as pathway
analysis and random sampling, the size of multiple
interacting metabolic networks exacerbates the
computational challenges and makes flux prediction for

multicellular systems practically infeasible [12,13].
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Without fundamental progress in the computational
methods, flux predictions for multicellular systems
require an integration of CBMs with extracellular con-

centrations through experimental data, metabolite
uptake kinetics, or both. We argue that models that
combine CBMs with kinetics are the most promising
approach to connect fluxes to concentrations because
they rely less on dynamic metabolite data than state-of-
the-art methods for integrating metabolomics with
CBMs [14,15]. They also need fewer kinetic rate laws
and parameters than detailed kinetic models that are
often hard to identify and computationally expensive to
simulate [16]. Hybrid models can be simulated through
dynamic flux balance analysis (DFBA) approaches [17],

which connect kinetics to flux predictions from FBA
without needing multicellular objectives. Alternative
approaches to simplify dynamics, cybernetic models,
consider more detailed, optimal pathway-level resource
allocation; they are computationally expensive and
currently not applicable to genome-scale [18]. Here, we
therefore discuss recent advances in DFBA models, and
their applications to diverse uni- and multicellular sys-
tems with temporal and spatiotemporal resolution.

Metabolic models and dynamic FBA
Mass balances for metabolites that constrain the static
or dynamic fluxes are the basis for all metabolic models.
DFBA models contain two distinct sets of mass bal-
ances, one dynamic and one static (Figure 1). The QSSA
virtually always applies to the balances of all intracellular

metabolites; the metabolic network is considered static
on the extracellular time-scale. Dynamics are modeled

by a sequence of instantaneous steady-state responses
to environmental changes, mediated by the kinetics of
metabolite uptake and secretion. In this case, the dy-

namic components are biomass and metabolites that can
be exchanged between the cell and the environment.
Multiple CBMs can share the same pool of dynamic
metabolites, which in turn can connect to pools at other
points in space.

Because the dynamic and static mass balances are
interdependent, one has to solve them together
(Figure 2). This amounts to jointly solving ordinary
differential equations (ODEs) for dynamic balances and
linear algebraic equations for static balances, and inte-

gration of the former requires flux predictions from the
latter. Any realistic metabolic network contains more
reactions than metabolites, such that the static system is
generally underdetermined. Together with flux capacity
constraints, this defines a CBM whose solution space
contains an infinite number of feasible steady-state flux
distributions. FBA uses linear programming to identify a
specific solution that optimizes an objective function,
typically growth rate as represented by the flux of a
biomass reaction, and DFBA uses FBA to get the static
fluxes needed for integration of the ODE system. The

static fluxes, in turn, are constrained by the state of the
dynamic systemdthe environmentdthrough simple
binary rules or kinetic equations. In multicellular set-
tings, environmental resources are allocated to individ-
ual cells at each time step, and competition and
cooperation can emerge over time through dynamic in-
teractions. Importantly, it is not necessary to define

Figure 1
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Metabolic models for multicellular systems. Cells of potentially different types (indicated by colors) contain intracellular metabolic networks composed
of chemical species (grey nodes) and reactions (arrows) that are formally represented by a stoichiometric matrix N. CBMs for individual cells rely on the
QSSA, assuming that the intracellular metabolite concentrations cðtÞ do not change over time, such that the mass balances lead to a linear problem in
which the flux distribution (set of reaction rates) r is the only unknown. For extracellular metabolites (blue nodes) accessible to several cells, kinetics (time-
dependent exchange rates rðtÞ that are functions of extracellular concentrations cðtÞ and kinetic parameters p) need to be considered even in a constant
environment to capture how resources are distributed between cells. Spatial extensions follow the same logic, where kinetics (for example, describing the
diffusion of metabolites) connect different compartments (left and right).
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