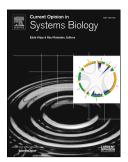
Accepted Manuscript

Living with noise: on the propagation of noise from molecules to phenotype and fitness

Frank J. Bruggeman, Bas Teusink

PII: S2452-3100(17)30191-9

DOI: 10.1016/j.coisb.2018.02.010


Reference: COISB 155

To appear in: Current Opinion in Systems Biology

Received Date: 24 October 2017
Revised Date: 27 February 2018
Accepted Date: 27 February 2018

Please cite this article as: Bruggeman FJ, Teusink B, Living with noise: on the propagation of noise from molecules to phenotype and fitness, *Current Opinion in Systems Biology* (2018), doi: 10.1016/j.coisb.2018.02.010.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT Living with noise: on the propagation of noise from molecules to phenotype and fitness

Frank J. Bruggeman^{1,2}, Bas Teusink¹

- 1. Systems Bioinformatics, Amsterdam Institute for Molecules, Medicine & Systems, VU University, Amsterdam, The Netherlands
- 2. Corresponding author: f.j.bruggeman@vu.nl

Abstract

In single cells, all molecules fluctuate in concentration because synthesis and degradation events occur asynchronously in a probabilistic manner. Since molecules generally influence multiple reactions, concentration fluctuations can propagate through the entire molecular circuit of a cell. This causes single isogenic cells to vary in their phenotypic properties, which affects the fitness of the associated genotype. Currently, we have a good understanding of how fluctuations arise and propagate in small molecular circuits. Convincing experimental observations exist of fluctuations in the growth and fitness characteristics of single cells. Yet, we have a poor understanding of which molecule concentration fluctuations cause emergent fluctuations in the phenotype of a single cell, how extensive fluctuation propagation is, and what its effects on fitness are. In this opinion paper, we discuss those aspects of current single-cell systems biology.

Box 1: Definitions and insightful relations

Stochasticity: A system is stochastic if random fluctuations occur in its variables. This means we can assign probabilities to variable values. A deterministic system does not show fluctuations. See Figure 1 and 2.

Fluctuations: A fluctuation is the deviation in the value of a variable of a single cell, such as a concentration or generation time from the mean value across all cells. So, for cell i a fluctuation is defined as $\delta x_i = x_i - \langle x \rangle$, with $\langle x \rangle$ as the mean value of one of its variables. Since fluctuations can be negative and positive, the mean size of fluctuations is calculated from the mean squared deviation, denoted by $\langle \delta^2 x \rangle$, which equals the variance of x across all cells. The standard deviation equals $\sqrt{\langle \delta^2 x \rangle}$ and is therefore a measure of fluctuation sizes. See Figure 2.

Noise: noise is a measure for the significance of fluctuations, defined as the squared coefficient of variation (CV^2) .

Accordingly, the noise equals
$$CV^2 = \frac{variance(x)}{mean(x)^2} = \frac{\langle \delta^2 x \rangle}{\langle x \rangle^2}$$

Download English Version:

https://daneshyari.com/en/article/8918052

Download Persian Version:

https://daneshyari.com/article/8918052

<u>Daneshyari.com</u>