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Abstract

Advances in genomic technologies in the last decade have
revolutionised the field of medicine, especially in cancer, by
producing a large amount of genetic information, often referred
to as Big Data. The identification of genetic predisposition
changes, prognostic signatures, and cancer driver genes,
which when mutated can act as genetic biomarkers for both
targeted treatments and disease monitoring, has greatly
advanced our understanding of cancer. However, there are still
many challenges, such as more sophisticated analysis tools
and higher processing capacity, along with cheaper storage,
faster and more efficient data transfer, that must be overcome
before personalised medicine finally becomes a reality.
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Introduction

Cancer is a genetic disease. Finding cancer-causing ge-
netic events was painstakingly slow until the introduc-
tion of Sanger sequencing [1], comparative genomic
hybridisation [2], microarray and more recently, next
generation sequencing (NGS) technologies (reviewed
in Ref. [3]). These technological advances increased our
knowledge of the human genome and its role in dis-
eases, shifting from “single gene-single disease” with
limited sample numbers, to millions of data points
collected from up to thousands of samples. This led to

not only the publication of the human genome by the
Human Genome Project (HGP) [4,5], but also discov-
eries of copy number events and transcriptomic signa-
tures that have refined tissue-specific signatures, aiding
diagnosis, prognosis and therapeutic decisions.

The reference genome took 13 years and US$3 billion to
produce. It highlighted the need for more sophisticated
sequencing technologies, resulting in several NGS or
2nd generation sequencing technologies allowing for
rapid large-scale genomic sequencing (reviewed in
Ref. [3]). The US$1000 genome challenge, introduced
by NHGRI back in 2004, has now been met as Veritas
Genomics recently advertised complete genome
sequence for a single individual with interpretation for
US$999.

In this review, we will consider the explosion of data
generated from the advent of both microarrays and the
NGS era as “Big Data”. We will discuss the importance
of “Big Data” in refining our understanding of cancer
biology, its potential and challenges.

Types of data in cancer genomics

DNA and RNA are the two most utilised biological
materials in cancer genomics. DNA sequencing includes
whole genome sequencing (WGS) or targeted
sequencing (TS), where PCR primers or oligonucleo-
tides are designed for enrichment of specific genomic
regions, such as whole exome (WES) or smaller custom
panels. WGS is the most comprehensive and can iden-
tify all types of genomic alterations, but it is time
consuming and cost prohibitive, whereas enrichment
methods detect predominantly single nucleotide alter-
ations. RNA sequencing reveals not only gene expres-
sion, but also alternative splicing events, gene fusions,
post-transcriptional modifications and allelic expres-
sions. Amongst the less studied are the proteome, non-
coding transcriptome and epigenome, although these
fields are rapidly gaining interest.

Big data achievements

For almost a decade, microarrays were indispensable
tools for the understanding of cancer genomics.
Expression arrays were pivotal in providing an insight
into the biology of cancer. Indeed, the use of expression
arrays radically altered our classification of breast cancer,
which had been previously thought to be one disease.
Five subtypes emerged, with very different clinical
prognoses [6]. By layering on copy number alterations
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from copy number arrays, breast cancer was further
refined into 10 integrative clusters (IntClust), identi-
fying, for the first time, ER positive tumours with poor
survival [7]. However, microarray data is limited to gross
expression, copy number changes, and single nucleotide
polymorphism (SNP) identification. It is not able to
provide base pair level information across the whole
genome. On the other hand, NGS technologies could
provide this, and a paradigm shift occurred, with pref-
erential usage of NGS rather than microarrays. Inter-
national consortia such as The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium
(ICGC) have spearheaded sequencing efforts into
common cancer types. TCGA have sequenced 12 types
of cancer (https://cancergenome.nih.gov/) and ICGC
have sequenced 21 tissue types (http://icgc.org/).

For the very first time, whole genome aberrations (copy
number aberrations, single nucleotide variations, small
insertions-deletions) could be identified for each pa-
tient in a single experiment making personalised med-
icine a reality. Common alterations per tumour type
were identified, as well as subtle differences within a
single tumour subtype. For instance, three separate
NGS studies on lobular breast cancers (ILC) identified
only CDH1 and PIK3CA as frequently mutated, regard-
less of where the studies were conducted, suggesting
that these are bona fide cancer driver genes in ILC [8—
10]. More importantly, meta-analyses of combined
data from multiple sites can increase sample numbers,
especially for rare disease subtypes.

Surprisingly NGS data revealed that very few genes
were mutated at high frequencies across different
cancer types, including breast cancer [8,11—13],
suggesting that there is no one gene that drives carci-
nogenesis in all cancer types. Hence, few novel drugs
targeting single gene alterations would result from cur-
rent sequencing efforts. Instead, existing drugs might
work better if we know the patients’ genetic code. For
example, PI3K inhibitors have not shown much efficacy
in breast cancer patients with PIK3CA mutations [14].
Whilst PIK3CA mutations do not confer worse prognosis
in all ER positive (+) breast cancer patients, they do in
specific ER+ IntClusts, suggesting that PI3K inhibitors
might be more beneficial for these women [12]. In
addition, some genes can function as tumour suppres-
sors (‘T'SG) or oncogenes in different types of tumours,
such as NOTCH]1 [15], or only in specific contexts, €.g.
SMAD4 is a putative TSG in ER+ breast cancers only
[12]. Identifying genetic biomarkers for each patient
will allow residual disease and the efficacy of each
treatment cycle to be monitored using non-invasive cell-
free DNA in plasma [16].

The availability of data from different tumour types has
allowed for the first time an innovative meta-analysis
combining all “omics” data in a “pan-cancer” effort to
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study the similarities and disparities in the genomic
changes. TCGA combined data across 12—14 cancer
types and found that different tumour types could be
classified into copy number or mutation driven groups.
APOBEC3B was shown to be associated with widespread
mutagenesis in many cancer types [17,18]. Aggregating
rare mutations occurring in all cancers allowed some to
be implicated as drivers when integrated into known
biological pathways hence, identifying novel drug tar-
gets that would never have been significant in a single
cancer analysis [19,20]. Similarly, ICGC did a “pan-
cancer” analysis across 40 cancer types using data from
10,952 exomes and 1048 whole-genomes (http://cancer.
sanger.ac.uk/cosmic/signatures), and found that muta-
tions occur in specific patterns that represent the
different biological processes the cell has undergone,
such as smoking, ageing and DNA damage [21,22].

With deep sequencing, variant frequencies can be
quantified even for rare alleles. This has led to the
development of statistical methods that seek to mea-
sure clonal heterogeneity within the tissue, or intra-
tumour heterogeneity (I'TH) [23—25], and has
expanded our knowledge of cancer evolution by identi-
fying clonal and subclonal mutations [26,27]. Investi-
gating I'TH has led studies into the temporal dynamics
of cancer growth, but it is still inconclusive if it is a
gradual accumulation or punctuated formation of driver
mutations (reviewed in Ref. [28]).

Comprehensive mutation documentation and advances
in epitope predicting algorithms have aided in the iden-
tification of patient specific neoantigens [29—31]. These
cancer neoantigens could make personalised immuno-
therapy a possibility in the not too distant future.

The era of big data has also transformed the field of
cancer susceptibility, not only in terms of larger acqui-
sition capability, but data handling and analysis. The
development of better genotyping technologies and the
establishment of international consortia have produced
over 100 new genome-wide association studies (GWAS)
in the last two years alone, yielding over 1200 associa-
tions for a range of cancer types (The NHGRI-EBI
Catalog of published GWAS is available at: www.ebi.ac.
uk/gwas. Accessed February 7th 2017) [32].

However, NGS has not been a major contributor to the
discovery of new risk loci, mostly because of costs
involved in analysing the necessary number of in-
dividuals. Nevertheless, there are already some exam-
ples of its application in association studies, as well as
follow-up fine mapping studies [33—35]. Additionally,
GWAS consortia have taken associations studies to the
tens of thousands of subjects, and with that have
allowed a much more detailed dissection of cancer
actiology, such as identifying cancer sub-type specific
risk loci, and cross-cancer analysis risk loci with
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