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Abstract

Microbiome datasets have expanded rapidly in recent years.
Advances in DNA sequencing, as well as the rise of shotgun
metagenomics and metabolomics, are producing datasets that
exceed the ability of researchers to analyze them on their
personal computers. Here we describe what Big Data is in the
context of microbiome research, how this data can be trans-
formed into knowledge about microbes and their functions in
their environments, and how the knowledge can be applied to
move microbiome research forward. In particular, the devel-
opment of new high-resolution tools to assess strain-level
variability (moving away from OTUs), the advent of cloud
computing and centralized analysis resources such as Qiita
(for sequences) and GNPS (for mass spectrometry), and better
methods for curating and describing “metadata” (contextual
information about the sequence or chemical information) are
rapidly assisting the use of microbiome data in fields ranging
from human health to environmental studies.
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From cells to bits: what is big data in
microbiome research?
Since the term “microbiome” was coined by Joshua
Lederberg in 2001 [1], the microbiome research field
has exploded both in terms of the heterogeneity of the
data produced and in the amount of data generated.
Early approaches to characterizing the microbiome were
based on targeted detection techniques in the

laboratory, such as culturing and assays based on the
Polymerase Chain Reaction (PCR), and assessed limited
numbers of subjects (on the order of tens) [2]. The

introduction of sequencing technologies revolutionized
the field, enabling investigators to characterize micro-
bial communities directly from primary samples. His-
torically, the 16S rRNA gene, a marker gene that exists
in all bacteria and archaea as an essential part of the
ribosome, has been targeted for these sequence-based
profiling efforts. Its ubiquity among bacteria and
archaea and the low cost of the approach has made it the
most widely used for microbiome profiling of samples.
Similarly, amplification and sequencing of the 18S rRNA
gene and the internal transcribed spacer (ITS) permit

investigators to profile the eukaryotic and fungal com-
munities present in a sample using similar techniques.
Since the introduction of Next Generation Sequencing,
technologies have evolved from generating a few hun-
dred thousand reads per run (454 GS) to tens of million
reads (Illumina MiSeq) or even a few billion reads per
run (Illumina HiSeq) [3]. Benchmarked protocols, such
as those used by the Earth Microbiome Project and
widely adopted by researchers around the globe, facili-
tate meta-analyses of unprecedented size-investigators
can combine studies, each with hundreds to thousands

of samples, into a single large analysis effort.

The precipitous drop in sample processing and
sequencing costs associated with new technology
development is enabling researchers to move beyond
simple taxonomy and abundance-based work to species
and strain level profiling as well as descriptions of
functional pathways through whole genome shotgun
metagenomics sequencing. As a result, researchers are
able to ask more critical questions of their samples and
are utilizing other technologies, such as detection of

small molecules via mass spectrometry, to confirm or
refute hypotheses driven by functional pathway and
gene abundance information obtained from shotgun
sequencing data.

The rate at which these technologies are increasing
their data output is faster than our computational power
is growing [4], effectively shifting the costs of a research
study from the sequencing pipeline to the data analysis
pipeline. Additionally, as researchers utilize larger and
larger datasets, they are able to design large-scale
studies to ask (and answer) complex questions. The

metadata associated with samples, therefore, is
becoming an increasingly large contributor to
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microbiome big data and the challenges associated with
streamlining data analysis. Standards such as MIMARKs
[5] have helped investigators format their metadata to
facilitate data analysis and data upload to repositories
such as the European Bioinformatics Institute’s Euro-
pean Nucleotide Archive (EBI ENA). Nevertheless, as
samples are increasingly processed in parallel with
multiple different protocols (i.e., 16S, 18S, ITS,

shotgun, metabolomics, etc.), correct formatting of
metadata to capture this information and facilitate
multi-omics correlative analyses will require careful
attention and appropriate implementation of tools
capable of handling hundreds to thousands of columns
of data for hundreds to thousands of samples. Tools such
as Qiita (qiita.microbio.me) are being developed to
address the challenges associated with analyzing large
numbers of samples, processed via multiple different
protocols, and with complex metadata-and these tools
rely on both the availability and effective usage of large-

scale compute resources. The ability to apply tools such
as QIIME in the cloud; e.g., using Amazon Web Services
[6], has broadened these capabilities far beyond the
original user base, and enabled users in developing
countries such as Bangladesh to use these tools without
operating their own large-scale compute infrastructure.
These techniques are now being applied in the United
States through Illumina’s BaseSpace (https://basespace.
illumina.com/home/index) and NIH’s Cloud Pilot
(https://commonfund.nih.gov/bd2k/commons).

From bits to knowledge: how is big data
moving microbiome research forward?
Initial efforts to characterize and understand the
healthy human microbiome using next generation
sequencing techniques [7,8] raised more questions than
answers, and led to the explosion of microbiome

research that has identified associations between the
microbiome and diseases as varied as obesity, inflam-
matory bowel disease, cardiovascular disease, and autism
(among many others). Most of these studies have simply
identified associations and the question of causation or
simple association remains unknown. Key studies, such
as the obesity work done by Jeffrey I. Gordon and his
team at Washington University [9e11] and the
personalized nutrition work done by Eran Segal of the
Weizmann Institute [12] are coming closer to answering
the question of causality versus association. However, it

is becoming increasingly clear that integrating DNA
sequence data with other ‘omics techniques such as
metatranscriptomics (sequencing the RNA), proteomics
(sequencing the proteins), and metabolomics (charac-
terizing the metabolites) will be key for advancing
microbiome research. An example of the power of
combining multiple techniques for assessing the
microbiome is the National Institutes of Health’s
(NIH) Human Microbiome Project (HMP), the largest
human microbiome sequencing effort at the time of its

publication in 2012. 16S rRNA gene amplicons were
generated from total of 4788 samples collected from 242
healthy adults [7] and sequenced using 454 pyrose-
quencing. Additionally, a whole genome shotgun
sequencing on the paired-end Illumina platform was
performed on a subset of 681 samples, generating 2.9
Gigabases per sample (close to 2 terabytes of data for
the entire dataset).

The HMP shotgun metagenomics data revealed a key
observation: while no taxon was observed in all in-
dividuals (i.e., no “core” healthy microbiome was iden-
tified), the functional pathways inferred from the
shotgun data were evenly distributed across individuals
and body sites. While this was an important observation,
the addition of other data types, such as RNA-seq or
metabolomics would have provided precise information
regarding the actual activity of the microbial community
and which small molecules were present, respectively,

further exemplifying importance of combining different
-omics techniques for generating hypotheses that ulti-
mately lead to studies designed to obtain a more com-
plete picture of a given microbial community (and the
significance of its presence). For example, as reported by
Bouslimani et al. [13], using a paired sequencing-mass
spectrometry approach allowed the investigators to
identify correlations between Propionibacterium genera
and the presence of oleic acid, palmitic acid, mono-oleic,
and palmitic acylated glycerols on human skin. Hy-
pothesizing that Propionibacterium mediates the hydro-

lyzation of triacylglycerides or diacylglycerides from
human acylated glycerols, Bouslimani et al. cultured
Propionibacterium acnes in a medium supplemented with
the triglyceride triolein and examined the resulting
metabolic products, ultimately confirming their
hypothesis.

Microbiome citizen science initiatives such as the
American Gut Project (AGP; americangut.org) have
made significant contributions to the field by “democ-
ratizing” microbiome research and thus providing large-
scale datasets that can be used as comparative frame-

works for other studies. Citizens support the science by
sending samples from their bodies, their pets, or their
environment as well as the necessary funds to cover the
sample processing. These projects face the challenge of
dealing with large numbers of samples; while most
current microbiome studies contain hundreds or a few
thousand samples, these citizen science efforts contain a
continually growing number of samples that in some
cases are on the order of over ten thousand samples,
pushing the limits of the current computational tools.
Furthermore, this democratization is not free: subject

data is self-reported, and at times, significant amounts of
data are necessary to correctly characterize the sample
source. The American Gut Project currently collects up
to 400 variables about study participants, including
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