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a b s t r a c t 

Two new stabilizing control schemes are presented for uncertain linear constrained systems on a con- 

trolled invariant set C. The first scheme is an extension of the control law in Blanchini (1994), where 

the requirement that C is contractive in one step is relaxed. The second scheme aims to improve the 

performance by using a modified Minkowski functional concept. Proofs of recursive feasibility and robust 

asymptotic stability are provided. One numerical example with comparison to earlier solutions shows the 

main benefits of the proposed methods. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the last decades, the regulation problem of a uncertain 

system with input and state constraints has been extensively stud- 

ied. Especially in the discrete time case, different solutions are 

available as, for example, those based on min-max Model Predic- 

tive Control (MPC) ( Bemporad, Morari, Dua, & Pistikopoulos, 2002; 

Camacho & Alba, 2013 ), or interpolating control ( Nguyen, 2013; 

Rossiter, Kouvaritakis, & Bacic, 2004 ) or Minkowski functional min- 

imization control ( Blanchini, 1994; Blanchini & Miani, 2007 ). 

In min-max MPC, a sequence of control actions is obtained 

which ensures the constraint satisfaction along the predicted tra- 

jectory of the plant for any possible uncertainty, and minimizes 

the worst case performance index of the predicted evolution of the 

plant. Solving this problem can be very demanding for large di- 

mensional system and/or long prediction horizon, as they are NP 

hard ( Lee & Yu, 1997 ). Thus the implementation of this type of 

control is limited to applications with relatively slow dynamics and 

small-scale processes. 

Several attempts have been made in the literature to over- 

come the computational load problem of min-max MPC. In 

Bemporad, Borrelli, and Morari (2003) , it was shown that the min- 

max MPC with a linear cost is equivalent to a multi-parametric lin- 

ear program, where the state plays the role of a vector of param- 

eters for the optimization problem. The solution is the so called 
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explicit MPC where the control is a piecewise affine function of 

the state over a polyhedral partition of the state space, and the 

computational effort of the min-max MPC is moved off-line. How- 

ever, for large dimensional systems and/or long prediction horizon 

the explicit solution may be very complex due to a high number 

of polyhedral cells. In Kothare, Balakrishnan, and Morari (1996) , a 

new min-max MPC formulation was proposed that minimizes a 

quadratic cost function. At each time instant a linear state feed- 

back law is obtained by solving a semi-definite programming prob- 

lem involving linear matrix inequality constraints. In Wan and 

Kothare (2003) and Angeli, Casavola, Franzè, and Mosca (2008) , an 

off-line ellipsoidal min-max MPC scheme is proposed by using a 

sequence of linear state feedback laws that correspond to a se- 

quence of nested asymptotically stable invariant ellipsoids. 

Interpolating control is an alternative approach which can be 

used to avoid the computational complexity problem of min-max 

MPC ( Nguyen, 2013; Rossiter et al., 2004 ). The main idea is to 

employ a set of pre-defined controllers to overcome limitations 

of a single controller. However, the full control range is usually 

not exploited, since the control vector is not a decision variable 

in the optimization problem. Hence the time to regulate the plant 

to the origin is longer than necessary. Note that the approach in 

Cannon and Kouvaritakis (2005) has the same performance weak- 

ness as the interpolating control in Rossiter et al. (2004) and 

Nguyen (2013) . 

A Minkowski functional minimization control law is proposed 

in Blanchini (1994) . The basic idea is to calculate the control ac- 

tion that minimizes the Minkowski functional of the one step 

ahead state prediction for a given λ−contractive set C, λ∈ [0 1). 
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At most two optimization problems of modest size are required to 

be solved at each time instant. The main weakness of this con- 

trol law is that there is no tuning parameter in the case that the 

closed-loop system performance is poor, which is often the case 

for states near the origin ( Blanchini & Miani, 2007 ). In Darup and 

Mönnigmann (2015) , a predictive like control law is presented that 

can stabilize any state in an arbitrarily close inner approximation 

of a controlled invariant set. 

Two novel constrained control laws are proposed in this pa- 

per. The first one is an extension of Blanchini (1994) , where the 

requirement that C is contractive in one step is relaxed. We also 

point out that the algorithm in Blanchini (1994) may fail in this 

case. The second one aims to improve the performance by intro- 

ducing a new definition of the modified Minkowski functional. This 

functional can be seen as a distance of a point from a set. At each 

time instant at most two optimization problems of modest size are 

required to be solved. Proofs of recursive feasibility and asymptotic 

stability are provided. 

This paper is organized as follows. Section 2 is dedicated to 

the basic definitions and Section 3 to the Minkowski functional 

minimization control. In Section 4 results on the design of a 

novel stabilizing constrained controller are presented. One simu- 

lated example with comparison to earlier solutions is evaluated in 

Section 5 before drawing the conclusions in Section 6 . 

2. Problem formulation and preliminaries 

2.1. Problem formulation 

We consider the problem of regulating to the origin the follow- 

ing uncertain and/or time-varying discrete-time linear system 

x (t + 1) = A (t ) x (t ) + B (t ) u (t ) (1) 

where x (t) ∈ R 

n and u (t) ∈ R 

m are the measurable state and the 

input, respectively. The system matrices A (t) ∈ R 

n ×n and B (t) ∈ 

R 

n ×m satisfy ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

A (t) = 

s ∑ 

i =1 

αi (t) A i , B (t) = 

s ∑ 

i =1 

αi (t) B i , 

s ∑ 

i =1 

αi (t) = 1 , αi (t) ≥ 0 , ∀ i = 1 , 2 , . . . , s 

(2) 

In almost all the practical applications, physical bounds on the 

state vector x ( t ) and control vector u ( t ) are present ( Blanchini & 

Miani, 2007 ). Broadly speaking, the control law must be designed 

such that x ( t ) of the closed-loop system is confined to a compact 

region, named the allowable state region, while u ( t ) does not vio- 

late its constraints. Hence, the following is assumed {
x (t) ∈ X, X = { x ∈ R 

n : F x x ≤ g x } , 
u (t) ∈ U, U = { u ∈ R 

m : F u u ≤ g u } (3) 

where g x > 0 and g u > 0. Element-wise inequalities are considered 

for simplicity, but the technique in the paper can be straightfor- 

wardly extended to more general mixed state/input constraints. 

2.2. Basic definitions 

Definition 1. Given two polytopes P, Q , their Minkowski sum, de- 

noted as P � Q , is the polytope 

P � Q = { z| ∃ (p, q ) ∈ (P, Q ) such that z = p + q } (4) 

The following lemma will be used for the recursive feasibility 

proof of the control scheme presented in this paper. 

Lemma 1. ( Oks & Sharir, 2006 ) For a given polytope P and two 

scalars μ≥ 0 and λ≥ 0, the following equality holds 

μP � λP = (μ + λ) P (5) 

Fig. 1. Modified Minkowski functional (solid red), and Minkowski functional 

(dashed cyan) as a function of x , and the sets P (solid blue) and Q (dashed green). 

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 

Definition 2. ( Blanchini & Miani, 2007 ) Given a polytope P, con- 

taining the origin in its interior. For a given x ∈ P, the Minkowski 

functional of P is defined as, 

�P (x ) = min 

μ
{ μ ≥ 0 : x ∈ μP} (6) 

The function �P (x ) is convex, positively homogeneous of order 

one, i.e. �P (εx ) = ε�P (x ) for any ε ≥ 0. It can be seen �P (x ) as a 

measure from x to the origin. 

Definition 3. Given two polytopes P, Q , 0 ∈ Q ⊆ P . For a given 

x ∈ P, the modified Minkowski functional of P with respect to Q 

is defined as 

�P→Q (x ) = min 

μ,r 
{ μ} s.t. 

⎧ ⎨ 

⎩ 

0 ≤ μ ≤ 1 

x − r ∈ μP 

r ∈ (1 − μ) Q 

(7) 

Note that r is a vector in (7) . 

Remark 1. If Q is the origin, then r is a zero vector in (7) . Hence 

(7) coincides with (6) . Therefore the Minkowski functional is a par- 

ticular case of the modified Minkowski functional. 

The modified Minkowski functional can be seen as a distance 

from x to the set Q normalized by the set P . Note that 

• μ = 1 for all x on the boundary of P . 

• 0 < μ≤ 1 for all x ∈ P �Q . 

• μ = 0 , for all x ∈ Q . 

For example, consider the following polytopes P ⊂ R and Q ⊂
R , 

P = { x ∈ R : −4 ≤ x ≤ 4 } , 
Q = { x ∈ R : −1 ≤ x ≤ 1 } (8) 

In this case, μ given from (7) can be explicitly calculated as a 

piecewise affine function of x 

μ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
3 

x − 1 
3 
, if x ≥ 1 , 

0 , if − 1 ≤ x ≤ 1 , 

− 1 
3 

x − 1 
3 
, if x ≤ −1 

(9) 

Fig. 1 presents the modified Mikowski functional (solid red) and 

the Minkowski functional (dashed cyan) as a function of x as well 

as the sets P (solid blue) and Q (dashed green). It can be verified 

in Fig. 1 that the modified Minkowski functional is always equal to 

or smaller than the Minkowski functional, since that latter one is 

a particular case of the former with r = 0 . 
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