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a b s t r a c t 

In this paper, we investigate optimal control and operation of a network of linear, physically decoupled 

systems with a coupling in the objective function. To deal with the corresponding distributed control 

problem, we propose a new Model Predictive Control (MPC) scheme based on the Alternating Direction 

Method of Multipliers (ADMM). In particular, we thoroughly investigate the flexibility of the proposed hi- 

erarchical distributed MPC algorithm with respect to both its plug-and-play capability and changes in the 

(local) system dynamics and objective functions at runtime. Moreover, we show linear scalability in the 

number of subsystems. The efficacy of the distributed optimization algorithm embedded in MPC is illus- 

trated on three battery scheduling problems arising from the predictive control of residential microgrid 

electricity networks. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Optimal control and operation of large-scale cyber-physical sys- 

tems presents numerous challenges, among them: the curse of 

dimensionality; security concerns due to sharing of sensitive in- 

formation between subsystems; and the desirability of adding 

new subsystems without requiring a coordinating agent to pos- 

sess detailed information about such subsystems, so-called “plug- 

and-play” functionality. Distributed optimization algorithms used 

in this context, such as dual decomposition, date back to the 

early 1960s, ( Benders, 1962; Dantzig & Wolfe, 1960; Everett, 

1963 ). These algorithms split the task of minimizing a single, 
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large optimization problem into smaller independent subprob- 

lems, which are then either solved in parallel or sequentially. 

Progress on distributed optimization algorithms led to the alternat- 

ing direction method of multipliers (ADMM), ( Fortin & Glowinski, 

1983; Gabay, 1983; Gabay & Mercier, 1976 ), which, along with 

other distributed optimization algorithms, are extensively studied 

in Bertsekas and Tsitsiklis (1989) and Tsitsiklis (1984) . The re- 

discovery and popularity of distributed optimization algorithms 

in recent years is evidenced by the highly cited recent paper 

on ADMM by Boyd, Parikh, Chu, Peleato, and Eckstein (2011) , 

and the development of new methods such as those pro- 

posed in Houska, Frasch, and Diehl (2016) , Jakoveti ́c, Xavier, and 

Moura (2014) and Kia, Cortés, and Martínez (2015) , and the refer- 

ences therein. 

In this paper we propose a hierarchical distributed Model Pre- 

dictive Control (MPC) algorithm applicable to physically decou- 

pled subsystems with a coupling in the objective function (see 

Grüne & Pannek, 2017 and the references therein for an introduc- 

tion to MPC). The MPC scheme uses an ADMM algorithm based 

on Boyd et al. (2011 , Chapter 7) in the optimization step but in a 

tailored version. In particular, the subsystems communicate with 

a central entity rather than using a neighbor-to-neighbor commu- 

nication structure. By using ADMM in the hierarchical distributed 

MPC algorithm, the proposed predictive control scheme is flexible 
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with respect to both the system dynamics and the objective func- 

tion. This means that the system dynamics of the subsystems as 

well as the objective function can be changed online in the MPC 

closed loop operation. Additionally, it scales well with the number 

of subsystems, thereby addressing the aforementioned computa- 

tional, security, and plug-and-play functionality challenges. While 

the proposed MPC scheme has a similar communication structure 

as the algorithm defined in the earlier work ( Braun, Grüne, Kellett, 

Weller, & Worthmann, 2016 ), using ADMM offers significantly 

more flexibility with respect to the objective function and the sys- 

tem dynamics. 

As an application of our MPC algorithm we consider three dif- 

ferent problems related to the optimal scheduling of energy stor- 

age in a residential-scale electricity network. The first application 

is taken from Worthmann, Kellett, Braun, Grüne, and Weller (2015) , 

where we addressed the problem of smoothing the energy demand 

from a group of residences equipped with energy storage. The sec- 

ond application further extends this setting by considering addi- 

tional time-varying tube constraints that enable a grid operator 

to steer demand within reasonable limits. Such an approach gives 

energy providers flexibility when making operational decisions on 

both the quantity and type of external generation resources to be 

employed. The third application enables computation and/or im- 

plementation of the maximal islanding time for a microgrid. In this 

context, the proposed ADMM variant enables a grid operator to 

forecast the maximal duration of grid disconnection, while main- 

taining sufficient local supply to meet demand. Implemented in a 

predictive control context, the microgrid can collectively store en- 

ergy prior to the disconnection time, so as to maximize the time it 

can operate independently. 

Distributed MPC for linear systems has been extensively studied 

by Venkat and his coauthors and significant contributions in this 

field have been obtained in Stewart, Venkat, Rawlings, Wright, and 

Pannocchia (2010) , Venkat (2006) , Venkat, Hiskens, Rawlings, and 

Wright (2006) and Venkat, Hiskens, Rawlings, and Wright (2008) . 

For coupled linear systems, coupled in the objective function as 

well as in the dynamics, distributed MPC algorithms have been 

proposed, which allow for local optimization and guarantee closed 

loop stability with respect to a given setpoint. In contrast to the 

work of Venkat et al., we restrict our attention to a coupling in 

the objective function. This allows us to concentrate on scalability 

and flexibility with respect to the network structure and scalabil- 

ity with respect to the communication structure of our proposed 

distributed MPC algorithm. Moreover, it enables us to keep the 

communication structure independent of the system dynamics, in 

contrast to the work by Venkat et al. To ensure closed loop sta- 

bility Venkat et al. concentrate on quadratic cost functions which 

are strongly convex in the input u . In this paper we allow more 

general convex (i.e., not necessarily strongly convex) cost functions 

in the context of reference tracking instead of stability considera- 

tions. In this more general setting, we show that the solution of 

the distributed optimization problem provides the same open loop 

costs as a centralized solution of the optimization problem. More- 

over, our approach uses ADMM to split the coupled optimization 

into local optimization problems, whereas the optimization strate- 

gies in the works of Venkat et al. rely on the exchange of locally 

updated inputs u in every iteration. 

ADMM embedded in a receding horizon scheme has also 

been proposed in Conte, Summers, Zeilinger, Morari, and 

Jones (2012) and Scott and Thiébaux (2015) in the context 

of microgrids. As distinct from the present paper, however, 

neither Conte et al. (2012) nor Scott and Thiébaux (2015) 

implement ADMM as a hierarchical algorithm. Rather, 

both Conte et al. (2012) and Scott and Thiébaux (2015) use 

neighbor-to-neighbor communication instead of communication 

with a central entity. Consequently, communication structure 

Fig. 1. Visualization of the individual systems �i and the overall system �. 

and algorithm flexibility are not the focus of these papers. 

In Atzeni, Ordóñez, Scutari, Palomar, and Fonollosa (2013) , 

Kraning, Chu, Lavaei, and Boyd (2013) , and Le Floch, Belletti, Sax- 

ena, Bayen, and Moura (2015) , related distributed optimization 

algorithms are used in the context of smart grids. None of 

these algorithms, however, is embedded in an MPC scheme. 

In Atzeni et al. (2013) and Kraning et al. (2013) proximal algo- 

rithms are used to solve optimization problems for the optimal 

operation of a microgrid, and in Le Floch et al. (2015) dual de- 

composition algorithms are proposed to optimally charge a fleet of 

electric vehicles. 

The paper is structured as follows: In Section 2 we formu- 

late an optimal control problem in the form of a nonlinear opti- 

mization problem (NLP) for linear time-varying discrete-time con- 

trol systems coupled through a set of variables in the objective 

function. In Section 3 we introduce a hierarchical distributed op- 

timization algorithm and embed it in a receding horizon frame- 

work. In Section 4 we recall the system dynamics of an electric- 

ity network satisfying the assumptions of the dynamics introduced 

in Section 2 . The flexibility of the hierarchical distributed opti- 

mization algorithm with respect to the objective in the context of 

model predictive control is demonstrated in Section 5 based on the 

example of the microgrid. The paper concludes in Section 6 . 

2. Optimal control formulation for a network of linear systems 

We consider a network of I ∈ N linear time-varying discrete- 

time systems 

�i : 

{
x i (k + 1) = A i (k ) x i (k ) + B i (k ) u i (k ) + v i (k ) 

z i (k ) = E i (k ) x i (k ) + F i (k ) u i (k ) + w i (k ) 
(1) 

where x i ∈ X i ⊂ R 

n i , u i ∈ U i ⊂ R 

m i , z i ∈ R 

p are the state, input, and 

coupling variables, respectively, (v i (k )) k ∈ N ⊂ R 

n i and (w i (k )) k ∈ N ⊂
R 

p are known exogenous signals, and A i (k ) ∈ R 

n i ×n i , B i (k ) ∈ R 

n i ×m i , 

E i (k ) ∈ R 

p×n i , F i (k ) ∈ R 

p×m i are time-dependent matrices defining 

the system dynamics for all k ∈ N and for all i ∈ N I := { 1 , . . . , I} . 
As shown in Fig. 1 , systems �i are coupled through the vari- 

ables z i , i ∈ N I , leading to the overall system dynamics 

� : 

{
x (k + 1) = A (k ) x (k ) + B (k ) u (k ) + v (k ) 

z (k ) = 

1 
I 

∑ I 
i =1 (E i (k ) x i (k ) + F i (k ) u i (k ) + w i (k )) 

with 

x = (x T 1 , . . . , x 
T 
I ) 

T , u = (u 

T 
1 , . . . , u 

T 
I ) 

T , 

v = (v T 1 , . . . , v 
T 
I ) 

T , w = (w 

T 
1 , . . . , w 

T 
I ) 

T , 

and the averaged coupling variable z = 

1 
I 

∑ I 
i =1 z i . The definition 

of matrices A ( k ), B ( k ) follow immediately from the definition of 

the individual dynamics �i . Additionally we use the notation X = 

X 1 × · · · × X I and U = U 1 × · · · × U I to rewrite the state and input 

constraints. Throughout this paper we assume that the states x i are 

known or at least observable. 
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