Accepted Manuscript

System Identification through Online Sparse Gaussian Process Regression with Input Noise

Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden, Michel Verhaegen

PII: S2468-6018(17)30134-7 DOI: 10.1016/j.ifacsc.2017.09.001

Reference: IFACSC 6

To appear in: IFAC Journal of Systems and Control

Received date: 15 May 2017
Revised date: 13 August 2017
Accepted date: 22 September 2017

Please cite this article as: Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden, Michel Verhaegen, System Identification through Online Sparse Gaussian Process Regression with Input Noise, *IFAC Journal of Systems and Control* (2017), doi: 10.1016/j.ifacsc.2017.09.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

System Identification through Online Sparse Gaussian Process Regression with Input Noise

Hildo Bijl H.J.BIJL@TUDELFT.NL

Delft Center for Systems and Control Delft University of Technology Delft, The Netherlands

Thomas B. Schön

Department of Information Technology Uppsala University Uppsala, Sweden

Jan-Willem van Wingerden

Delft Center for Systems and Control Delft University of Technology Delft, The Netherlands

Michel Verhaegen

Delft Center for Systems and Control Delft University of Technology Delft, The Netherlands THOMAS.SCHON@IT.UU.SE

J.W.VANWINGERDEN@TUDELFT.NL

M.VERHAEGEN@TUDELFT.NL

Abstract

There has been a growing interest in using non-parametric regression methods like Gaussian Process (GP) regression for system identification. GP regression does traditionally have three important downsides: (1) it is computationally intensive, (2) it cannot efficiently implement newly obtained measurements online, and (3) it cannot deal with stochastic (noisy) input points. In this paper we present an algorithm tackling all these three issues simultaneously. The resulting Sparse Online Noisy Input GP (SONIG) regression algorithm can incorporate new noisy measurements in constant runtime. A comparison has shown that it is more accurate than similar existing regression algorithms. When applied to nonlinear black-box system modeling, its performance is competitive with existing nonlinear ARX models.

Keywords: Nonlinear system identification, Gaussian processes, regression, machine learning, sparse methods.

1. Introduction

The Gaussian Process (GP) (Rasmussen and Williams, 2006) has established itself as a standard model for nonlinear functions. It offers a representation that is non-parametric and probabilistic. The *non-parametric* nature of the GP means that it does not rely on any particular parametric functional form to be postulated. The fact that the GP is a *probabilistic* model means that it is able to take uncertainty into account in every aspect of the model.

©2017 Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden, Michel Verhaegen.

Download English Version:

https://daneshyari.com/en/article/8918258

Download Persian Version:

https://daneshyari.com/article/8918258

<u>Daneshyari.com</u>