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a b s t r a c t 

A classical approach for guaranteeing persistent feasibility of model predictive controllers during setpoint 

changes adds an artificial reference variable, whereby allowing for reference offset at a cost specified 

by an additional term in the cost function. Typically, the classical approach employs a linear quadratic 

regulator parameterized by the artificial reference as a terminal control law and hence requires invariant 

set computations in an augmented state/reference space. This paper develops a receding horizon sliding 

control technique for constrained linear setpoint tracking. By exploiting the flatness property of sliding 

hyperplanes, the artificial reference can be eliminated from the control scheme and the terminal invariant 

set is contained in the original dimensions of the state space only. The proposed dual mode receding 

horizon control design approach is proven to maintain persistent feasibility and stability. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The key benefit of model predictive control (MPC) over other 

control techniques is constraint satisfaction, but it comes at the ex- 

pense of a challenging persistent feasibility and stability analysis. 

For regulation problems, among other approaches, there is mature 

theory addressing the feasibility/stability issue by adding a suitable 

terminal invariant set constraint and a terminal cost term to the 

MPC scheme ( Borrelli, Bemporad, & Morari, 2017 ). However, when 

target setpoint changes occur, MPC regulation schemes can still be- 

come infeasible. 

The issue of changing setpoints was addressed in the litera- 

ture by several authors ( Dughman & Rossiter, 2015 ). Predictive 

reference management for changing references is presented in 

Bemporad, Casavola, and Mosca (1997) . A different approach is 

taken in Simon, Löfberg, and Glad (2014) , where an optimization 

variable for terminal constraint scaling is added in order to avoid 

infeasibility. Moreover, in a series of publications ( Ferramosca, 

Limon, Alvarado, Alamo, & Camacho, 2009; Ferramosca et al., 2011; 

Limon, Alvarado, Alamo, & Camacho, 2008; Limon, Ferramosca, Al- 

varado, Alamo, & Camacho, 2009 ) the authors develop an MPC 

scheme that allows changing setpoints by adding an additional op- 

timization variable which has the interpretation of an artificial ref- 
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erence. Moreover, an additional term in the cost function that pe- 

nalizes the deviation between the artificial reference and the ac- 

tual reference is added. An extended terminal invariant set con- 

straint that is formulated in terms of the augmented state includ- 

ing the artificial reference guarantees persistent feasibility. The au- 

thors also prove asymptotic stability with respect to feasible de- 

sired setpoints and the local optimality property ( Ferramosca et al., 

2011 ). 

Extending the state vector with the reference state is necessary 

in previous works ( Ferramosca et al., 2009; Ferramosca et al., 2011; 

Limon et al., 2008; Limon et al., 2009 ) because terminal sets cor- 

responding to different setpoints would overlap otherwise, which 

introduces ambiguity. This paper exploits the flatness property of 

sliding hyperplanes to eliminate the artificial reference, which re- 

sults in an invariant set solely contained in the original state-space 

dimensions. Having a lower dimensional state space can reduce the 

computational burden of invariant set computations in some appli- 

cations and generally reduces the number of constraints necessary 

to describe the set. 

The novel invariant set for tracking introduced in this pa- 

per is then incorporated in a receding horizon sliding control 

scheme (RHSC). RHSC combines design principles from MPC and 

sliding control ( Hansen & Hedrick, 2015 ). In a receding horizon 

fashion, the controller is designed to minimize the deviation of 

the system’s state to sliding surfaces/manifolds ( Utkin, Guldner, 

& Shi, 2009 ). Recent works indicate that this alternative shaping 

of the cost function can be beneficial in some practical control 

applications, see e. g. Li, Hansen, Hedrick, and Zhang (2017) and 
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Sudhakar, Hansen, and Hedrick (2016) . The controller presented in 

this paper maintains all of the key properties of the MPC from 

Limon et al. (20 08 , 20 09) and Ferramosca et al. (2009 , 2011) and 

allows for eliminating the artificial reference from the control 

scheme resulting in a slightly reduced number of optimization 

variables. 

The remainder of this paper is organized as follows. In 

Section 2 the concept of invariant sliding domains, i. e. invariant 

sets induced by sliding control laws, is derived. Subsequently, in 

Section 3 the invariant sliding domains from Section 2 are included 

in a receding horizon control framework and we provide feasibil- 

ity and stability proofs of the resulting schemes. Section 4 contains 

an illustrative example and Section 5 draws conclusions from this 

work. 

2. Invariant sliding domains 

It is well known that classical sliding control induces invariant 

sets in state space ( Slotine & Li, 1991; Utkin et al., 2009 ). This sec- 

tion formalizes these invariant sets in the presence of constraints. 

First, we present the considered control scenarios. Then, we derive 

terminal sliding control laws. Finally, we define two invariant sets 

of different complexity for receding horizon control applications. 

2.1. Preliminaries 

Consider square MIMO systems in state space form, where the 

state is denoted x (k ) ∈ R 

n and u (k ) , y(k ) ∈ R 

m are the input and 

output at time-step k . Furthermore, we assume an exact prediction 

model of the form 

x k +1 = Ax k + Bu k , (1) 

y k = Cx k . (2) 

We use standard notation, where the time-step is indicated by the 

subscript in order to express that Eqs. (1) and (2) yield model- 

based predictions of the actual system signals. The system matrices 

are A ∈ R 

n ×n , B ∈ R 

n ×m , and C ∈ R 

m ×n . Furthermore, the state and 

input are constrained by 

x ∈ X ⊆ R 

n , (3) 

u ∈ U ⊆ R 

m . (4) 

We restrict the sets X and U to have the origin in their interior and 

to be polyhedral. Additionally, we make the following assumption 

on the system. 

Assumption 1. The system (1), (2) 

• has relative degree (d 1 , . . . , d m 

) ; 

• is minimum-phase, i. e. the system only has transmission zeros 

strictly inside the unit circle of the complex plane. 

This paper uses the notion of relative degree from 

Isidori (1995) that is explicitly formalized for linear systems 

in Kraev, Rogovskii, and Fomichev (2014 , Definition 1). Note that 

the minimum-phase assumption implies stabilizability and de- 

tectability of (1), (2) ( Davison, 1983 ). The control goal is to let the 

system track a piecewise constant desired output signal, r k , i. e. 

we desire the tracking error, 

e k = y k − r k , (5) 

to go to zero while accounting for the system constraints. 

2.2. Terminal sliding controller 

Sliding control is utilized for obtaining a terminal state feed- 

back control law. Specifically, for each of the m output error com- 

ponents we define a Schur polynomial ( Kraus, Anderson, & Man- 

sour, 1988 ) encoding the desired eigenvalues of the output error 

dynamics. The degree of these error dynamics is l i := d i − 1 , i = 

1 , . . . , m . For invariant set computations we replace r k in (5) by an 

artificial reference variable, ˜ r , and form 

˜ e k = y k − ˜ r ( Limon et al., 

2008 ). With abuse of notation we introduce the one-step ahead 

operator z and define a sliding variable by following the standard 

approach from Isidori (1995) and Sira-Ramírez (1991) as 

s k := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

( 

l 1 ∑ 

j=0 

α1 , j z 
j 

) 

˜ e 1 ,k 

. . . ( 

l m ∑ 

j=0 

αm, j z 
j 

) 

˜ e m,k 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(6) 

= 

⎡ 

⎢ ⎢ ⎣ 

α1 , 0 ̃  e 1 ,k + · · · + α1 ,l 1 ̃
 e 1 ,k + l 1 

. . . 

αm, 0 ̃  e m,k + · · · + αm,l m ̃  e m,k + l m 

⎤ 

⎥ ⎥ ⎦ 

. (6) 

There are two design restrictions that we enforce. Firstly, for sta- 

bility reasons the polynomials 
∑ l i 

j=0 
αi, j z 

j with i = 1 , . . . , m are re- 

quired to be chosen such that all roots are strictly inside of the unit 

circle. Secondly, we require αi,l i 
� = 0 , i = 1 , . . . , m . Farther, without 

loss of generality we normalize such that αi,l i 
= 1 , i = 1 , . . . , m . 

By recursively substituting the system model (1), (2) in (6) we 

arrive at the following representation for s k , 

s k = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

c � 1 

l 1 ∑ 

j=0 

α1 , j A 

j 

. . . 

c � m 

l m ∑ 

j=0 

αm, j A 

j 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

x k −

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

l 1 ∑ 

j=0 

α1 , j 

. . . 
l m ∑ 

j=0 

αm, j 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

˜ r 

=: Gx k − H ̃

 r . 

(7) 

The form of s k is standard, compare Spurgeon (1992) , with an 

added constant involving the reference to account for reference 

tracking rather than regulation to the origin. In (7) , all off-diagonal 

entries of H are zero and c � 1 , . . . , c 
� 
m 

denote the rows of C . It is 

important to note that the specified design restrictions enforce 

c � 
i 

A 

j B = 0 1 ×m , j = 0 , . . . , l i , i = 1 , . . . , m and hence these terms do 

not feature in (7) . 

Given a certain reference ˜ r , from (7) it is easy to interpret 

{ x : s = 0 m ×1 } as the intersection of m hyperplanes in state space. 

On this intersection, the specified desired error dynamics αi, 0 ̃  e i,k + 

· · · + αi,l i ̃
 e i,k + l i = 0 , i = 1 , . . . , m hold. For { x : s � = 0 m ×1 } , the com- 

ponents s i are a measure for the distance of x to the desired 

manifolds { x ∗ : g � 
i 

x ∗ − H i,i ̃  r i = 0 } which is directly quantified by 

s i / ‖ g i ‖ 2 , i = 1 , . . . , m, where g � 
i 

is the i th row of G . 

The so-called equivalent control law ( Spurgeon, 1992; Utkin 

et al., 2009 ), that enforces the state to be on the sliding manifold 

in the subsequent time-step is found by setting s k +1 = 0 m ×1 . Using 

(7) we find 

u 

eq 

k 
= −( GB ) 

−1 
( GAx k − H ̃

 r ) =: Kx k + L ̃  r , (8) 

where existence of ( GB ) −1 is ensured by 

Assumption 1 ( Kraev et al., 2014 ). 
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