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A B S T R A C T

In the present study, the detailed procedures of Galerkin weighted residual technique of finite element method
(FEM) for solving two-dimensional incompressible natural convective flow of nanofluids using nonhomogeneous
dynamic model are discussed for the first time. The physical domain is discretized by using unstructured tri-
angular elements. The governing partial differential equations of nanofluids are made dimensionless using the
suitable transformation of variables for weak formulations. The method of weighted residuals is used for ob-
taining the approximate solutions. This approach typically leads to a sparse and indefinite matrix that is difficult
to solve efficiently. The formation of an indefinite matrix is avoided in the present work by introducing an
artificial compressibility term in the continuity equation. Unequal order interpolation functions are used for
pressure, velocity, temperature and concentration variables. The coefficient matrices are calculated using in-
terpolation functions. Assembling of triangular elements in the discretized domain is discussed elaborately. The
process of calculating boundary integrals is also discussed. The Newton-Raphson iteration technique along with
Euler-backward scheme is used to solve the global matrix. The sample results are obtained for the convective
flow of nanofluids in a concentric annulus. It shows that the annulus of having higher thickness is the best
performer enhancing convective heat transfer rates.

1. Introduction

Finite element method is the most powerful numerical method ever
devised for the analysis of engineering problems for finding the ap-
proximate solutions of a system of partial differential equations. The
popularity of this method enhances over the course of time for solving
fluid dynamics problems. To deal a range of unsteady and nonlinear
flow problems in irregular domains, this method is adequately uni-
versal. The fundamental characteristic of finite element approximations
is the generation of a mathematical model by patching up together a
number of purely local approximations of the phenomena under con-
sideration. This feature of the method successfully emancipates the
experts from conventional troubles related to asymmetrical geometries,
mixed boundary conditions, and multi-associated domains.
Furthermore, applications have been firmly rooted in the physics of the
problem at hand. The ability to deal with the arbitrary geometries is an
important advantage of finite element methods. Also, the grids can
easily redefine and each element can simply subdivide. Mathematically,
finite element method is comparatively easy to analyze and can be
shown to have optimality properties for certain types of equations. The

preliminary studies indicate that the resulting equations are better
conditioned than those obtained by finite difference approximations of
the governing equations for a given order of accuracy (Oden and
Wellford [1]).

In FEM, the domain is divided into a set of discrete volumes of finite
elements that are generally unstructured. In 2D, the finite elements are
usually constructed by triangles or quadrilaterals whereas, in 3D, tet-
rahedral or hexahedra are most often used. The distinctive feature of
weighted residual finite element method is that the equations are
multiplied by a weight function before they are integrated over the
entire domain. The solution is approximated by a linear shape function
within each element in a way that guarantees continuity of a solution
across element boundaries. Such a function can be constructed from its
values at the corners of the elements. The weight function is usually of
the same form of shape function. Then the approximation is substituted
into the weighted integral of the conservation equations. The equations
to be solved are derived by requiring the derivative of the integral with
respect to each nodal value to be zero; this corresponds to selecting the
best solution within the set of allowed functions. The result is a set of
non-linear algebraic equations.
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The central ideas of the finite element method can be traced back to
the work of Hrennikoff [2] and Courant [3]. However, the formal
presentation of the method is generally attributed by the paper of
Turner et al. [4]. While the method has found wide application in solid
and structural mechanics, its application to flow problems has come
only in rather recent times. Primary practices of the method were
continuously accompanying with variational statements of the problem
under attention so that it is natural that steady, potential flow problems
were the first solved using finite element method. In this respect, the
works of Zienkiewicz et al. [5] and Martin [6] are worth noticing. Finite
element models of unsteady compressible and incompressible flow
problems were obtained by Oden and Somogyi [7] and Oden [8]. The
implementations of finite element method to a number of significant
problems in fluid mechanics have been described by Argyris [9], Tong
[10], Reddi [11], Baker [12]. The book of Zienkiewicz [13], Strang and
Fix [14], Codina [15], Zienkiewicz et al. [16] and Reddy [17] can be
consulted for additional references.

There are many benefits of the Galerkin weighted finite element
method. The main advantage of this method for the eigenvalue pro-
blems is its capability to deliver tremendously controlling numerical
tackles to resolve problems with additional particularized geometries,
physical disseminations, and so forth that barely can be dealt by other
approaches. The Galerkin weighted method is used as a global method

in the mechanical systems to reduce the complexity of the set of partial
differential equations to ordinary differential equations. Usually the
variational element shape function is used as basis function which
means that any polynomial or the suitable element shape function can
be used if the mode shapes are difficult to bring. One way, this method
reduces the dimensionality of the problem hence it is much faster.

Many scholarly articles are published using weighted residual finite
element method based on different packages or software. Nevertheless,
the step by step weighted residual finite element procedure by the in-
terpolation shape function along with the solutions steps over a coupled
set of five partial differential equations for continuity, momentum,
energy, and concentration is very rare in the heat transfer analysis.
Thus, the motivation of our work to present the procedures of Galerkin
weighted residual technique of finite element method to solve a two-
dimensional problem of natural convection incompressible flow of na-
nofluids in an annulus. The major steps involved in weighted residual
finite element method of a typical problem are:

1. Discretization of the domain into a set of finite elements (mesh
generation)

2. Weighted-integral or weak formulation of the partial differential
equations to be analyzed.

3. Development of the finite element model of the problem using its

Nomenclature

A area of an element
B applied magnetic field − −(Nm A )1 1

C concentration of nanofluid −(mol m )3

CC reference concentration (mol m )3

Ci constant terms ( = −i 1 8)
cp specific heat − −(J kg K )1 1

DB Brownian diffusion coefficient −(m s )2 1

dp diameter of nanoparticle (nm)
DT thermal diffusion coefficient −(m s )2 1

DT
ℓ numerical value of DT

g acceleration due to gravity −(m s )2

h heat transfer coefficient of nanofluid − −(Wm K )2 1

H weight function
H[ ] matrix of linear coordinates of an element

J Jacobian matrix or tangent stiffness
kB Boltzmann constant −(JK )1

Le Lewis number
Li area coordinates
n unit normal vector
NTBTC dynamic diffusion parameter
NTBT dynamic thermo-diffusion parameter
Nu Nusselt number
n n,x y direction cosines
Nβ element shape function
p dimensional modified pressure (Pa)
P dimensionless modified pressure
Pr Prandtl number
r thickness of annulus
R1 radius of inner circle
R2 radius of outer circle
RaT Rayleigh number
RaC modified Rayleigh number
Sc Schmidt number
Ha Hartmann number
Hλ element shape function for pressure
t dimensional time (s)
T nanofluid temperature (K)
TC reference temperature (K)

U V, dimensionless nanofluid velocity
u v( , ) dimensional nanofluid velocity −(ms )1

VT thermophoretic velocity −(ms )1

W weight function
X Y, dimensionless coordinates

Greek symbols

α thermal diffusivity −(m s )2 1

β thermal expansion coefficient −(K )1

∗β mass expansion coefficient (mol−1)
ϕ nanoparticles volume fraction
Φ dimensionless concentration
Ψ sphericity of the nanoparticle
μ viscosity − −(kg m s )1 1

ν kinematic viscosity −(m s )2 1

κ thermal conductivity − −(Wm K )1 1

σ electrical conductivity ( −Sm 1)
CΔ film concentration drop −(mol m )3

TΔ film temperature drop (K)
tΔ nominal time difference

θ dimensionless temperature
θc temperature at cold wall
θh temperature at hot wall
ρ density −(kg m )3

ε convergence criterion
λ* correction factor
ξ dimensionless time

Subscripts

bf base fluid
p nanoparticles
nf nanofluid
ave average
t derivative with respect to time
x derivative with respect to x
y derivative with respect to y
xx double derivative with respect to x
yy double derivative with respect to y
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