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A B S T R A C T

This paper describes the influence of relevant parameters to biomass pyrolysis on the numerical solution of nth-
order distributed activation energy model (DAEM) using Frank’s copula. In addition, the initial distribution
function f(E) is replaced by a continuous joint distribution function. Bi-variant distribution of activation energies
E1 and E2 are assumed to represent the primary and the secondary pyrolysis reactions respectively. Temperature
history is considered to vary linear with time. Thermoanalytical data is experimentally derived from TG/DTG
analysis.

1. Introduction

Mathematical representation of biomass decomposition is one of the
most complicating tasks, as several decomposition reactions occur si-
multaneously and their mechanism is unknown. Several mathematical
approaches have been used to simulate the process of decomposition
[1–5]. Commonly, isoconventional method is one of them, which pos-
tulates that kinetic parameters, such as the frequency factor and acti-
vation energy, vary with conversion [6–9]. There is another model
named lumped kinetic, which presumes an ultimate number of parallel
decomposition of nth order reactions. These parallel reactions are sum
up to provide overall decomposition of biomass. Conversely, the dis-
tributed activation energy or multi reaction model postulates that the
series of nth order parallel decomposition reactions with continuous
distributed activation energies occur simultaneously and share the same
frequency factor. However, principle of lumped kinetic model is con-
gruent to DAEM, but the number of expected reactions bifurcate these
two models.

Furthermore, pyrolysis is a complex process whose kinetic activities
are difficult to estimate through models, as the large number of pro-
ducts are not easily recognised whilst experimentation. Demarcation of
pyrolysis is done with help of two-step process [10,11]. A primary step
involves releasing of volatile content and it takes place in lower tem-
perature regime of pyrolysis process. The products which are obtained
in this step are: light gas and tar. The reactions occur during primary
pyrolysis autocatalysis the secondary reactions, which fall under high
temperature regime. The emanating light gases and the aromatization

of the biomass macro- molecules lead to char formation.
In this work, these two simultaneous activities are assumed to be

distinguished by two different activation energies variables with the
help of Frank’s copula C f E f E( ( ( ); ( )))θ 1 2 rather than univariant function
f (E). In the literature, various types of distribution function are used to
identify distribution pattern of activation energies, such as Gaussian
[12], Weibull [13], Gamma [14] and Rayleigh [15]; in this study the
Gamma and Rayleigh distributions are adopted. However, several other
works have been done to bring some change so that intrinsic behaviour
of distribution pattern of activation energies can be comprehended,
which also include a second Gaussian distribution (2-DAEM) [16]. This
model was also adopted by Zhang et al. [17] to model biomass pyrolysis
and gasification by considering different distribution of activation en-
ergies for each class of reactions which share the same frequency factor.
But it is not thumb-rule that Gaussian distribution can only provide
good curve fitting with thermoanalytical data. There are fair chances of
joint distribution function to provide the far better result which cannot
be conceived by a univariant function. The present work encompasses
application of copula to overshadow demerit of univariant and other
methods which are merely based on the Gaussian function. There also
exits a possibility that thermo analytical may provide asymmetrical
distribution pattern of remaining mass fraction, which can either po-
sitively or negatively skewed [18].

2. Mathematical solution of distributed activation energy model

The DAEM is mainly a multi-reaction model. Postulations and
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boundary conditions of the nth- order DAEM and the derived expression
is given in the literature [19]. The non-isothermal nth- order DAEM
equation are given by Eqs. (1) and (2).
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where A represents frequency factor, R is the universal gas constant, t is
time and T(l) is temperature experienced by the sample of biomass at
any instant of time, t .

In Eq. (1), the integrand comprises of the product of double ex-
ponential term (DExp)
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and a term representing the initial distribution f (E). DExp depends
upon the temperature condition used in the experiment and initial
distribution estimated only by physical behaviour of biomass used.

The main reason of complication associated with the solutions of
Eqs. (1) and (2) is evaluation of double integral as it requires significant
computing resources, especially when time taken by the iterative loops
is appreciably high. However, Niksa and Lau [20] derive approximate
analytical approximations to the DAEM for linearly or exponentially
varying temperature. They refined the ideas of Suuberg [21] by in-
corporating step-function approximation to DExp. Thereafter, the re-
sulting rapidly-varying double exponential functions is approximated
by a piece-wise linear function that has been demarcated by three re-
gions: one where DExp is zero, one where DExp is unity and one in the
interval of (0, 1) where it rises linearly. In the subsequent sections,
behaviour of DExp is considered first, and then an accurate approx-
imation derived, which is also valid for physically relevant problems.
However, distribution of activation energies can either adopt wide
distribution or narrow distribution, with respect to width Ew. But here
in this work we confined to wide distribution case in which width of
initial distribution function is relatively wider than that of DExp.

2.1. Systematic simplifications

The integrand in Eqs. (1) and (2) comprises of two terms. The first
term (DExp) depends on time through the temperature range de-
termined for the given sample. On the other hand, the second term is
invariant to time but function of the distribution pattern of volatiles in
the sample. Firstly, the behaviour of temperature dependent part, DExp,
is evaluated for the non-isothermal condition.

Approximations to the Double exponential term (DExp) is given by
Eq. (3)
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where T l( ) is the instaneous temperature which is defined at instant

time ‘l’.
Relation between temperature and time is given by Eq. (4)

=T l ml( ) (4)

In order to approximate the Eq. (3), some typical values of variables
are assumed. The frequency factors are typically in the
range ∼ − −A s10 1010 13 1, wheras the activation energies of interest are in
the range of 100–300 kJ/mol. Variation of temperature depends on the
particular experiment, here 700–1400 °C is used. It is to be noted that
the DAEM model can also be applicable to combustion problem where
the temperature range is significantly larger and hence it becomes easy
to extrapolate the simplifications made in the temperature range of
700–1400 °C rather than the higher temperature regime.

If the temperature is taken to ramp linearly, DExp will become
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The integral in the exponent of Eq. (3) can be approximated by
using the conventional Laplace approach where the parameter E
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suppose to be large, thus the dominant contribution from the integral is
when l is near t (and the temperature is near its maximum). In this
manner, the well-known asymptotic approximation to the function:
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Eq. (5) can also be written as
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where the function varies rapidly from zero to one as E increases, over a
range of size Ew around Es and this can be further approximated as
discussed below.
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As behaviour of g E( ) at neighbourhood of Es is of interest, this
function is expanded with the help of Taylor series,
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Using Eq. (7) and definition of g E( ), Es and Ew are chosen so that
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where Y(x) is the LambertW function.
One can observe easily from Eq. (6) that DExp is like a smooth step-

function, rising rapidly from zero to one in a range of activation en-
ergies of width Ew around the value E= Es, where both Es and Ew vary
with time.

Nomenclature

Ew Step size width (kJ/mol)
Es Central Value (kJ/mol)
Y(x) Lambert function
ϕ E( )p Marginal distribution function for primary reactions

(Gamma distribution)
U(x) Heaviside step function
m Heating rate (°C/min)

T Temperature (°C)
R Universal Gas constant (kJ/mol-K)
DExp Double exponential term
f(E) Distribution function
C(f(E1), f(E2)) Copula function

EΨ ( )p Marginal distribution function for secondary reactions
(Rayleigh distribution)
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